# Customize Logging MMAction2 produces a lot of logs during the running process, such as loss, iteration time, learning rate, etc. In this section, we will introduce you how to output custom log. More details about the logging system, please refer to [MMEngine Tutorial](https://mmengine.readthedocs.io/en/latest/advanced_tutorials/logging.html). - [Customize Logging](#customize-logging) - [Flexible Logging System](#flexible-logging-system) - [Customize log](#customize-log) - [Export the debug log](#export-the-debug-log) ## Flexible Logging System The MMAction2 logging system is configured by the `LogProcessor` in [default_runtime](https://github.com/open-mmlab/mmaction2/tree/main/configs/_base_/default_runtime.py) by default, which is equivalent to: ```python log_processor = dict(type='LogProcessor', window_size=20, by_epoch=True) ``` By default, the `LogProcessor` captures all fields that begin with `loss` returned by `model.forward`. For instance, in the following model, `loss1` and `loss2` will be logged automatically without any additional configuration. ```python from mmengine.model import BaseModel class ToyModel(BaseModel): def __init__(self) -> None: super().__init__() self.linear = nn.Linear(1, 1) def forward(self, img, label, mode): feat = self.linear(img) loss1 = (feat - label).pow(2) loss2 = (feat - label).abs() return dict(loss1=loss1, loss2=loss2) ``` The output log follows the following format: ``` 08/21 02:58:41 - mmengine - INFO - Epoch(train) [1][10/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0019 data_time: 0.0004 loss1: 0.8381 loss2: 0.9007 loss: 1.7388 08/21 02:58:41 - mmengine - INFO - Epoch(train) [1][20/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0029 data_time: 0.0010 loss1: 0.1978 loss2: 0.4312 loss: 0.6290 ``` `LogProcessor` will output the log in the following format: - The prefix of the log: - epoch mode(`by_epoch=True`): `Epoch(train) [{current_epoch}/{current_iteration}]/{dataloader_length}` - iteration mode(`by_epoch=False`): `Iter(train) [{current_iteration}/{max_iteration}]` - Learning rate (`lr`): The learning rate of the last iteration. - Time: - `time`: The averaged time for inference of the last `window_size` iterations. - `data_time`: The averaged time for loading data of the last `window_size` iterations. - `eta`: The estimated time of arrival to finish the training. - Loss: The averaged loss output by model of the last `window_size` iterations. ```{warning} log_processor outputs the epoch based log by default(`by_epoch=True`). To get an expected log matched with the `train_cfg`, we should set the same value for `by_epoch` in `train_cfg` and `log_processor`. ``` Based on the rules above, the code snippet will count the average value of the loss1 and the loss2 every 20 iterations. More types of statistical methods, please refer to [mmengine.runner.LogProcessor](mmengine.runner.LogProcessor). ## Customize log The logging system could not only log the `loss`, `lr`, .etc but also collect and output the custom log. For example, if we want to statistic the intermediate loss: The `ToyModel` calculate `loss_tmp` in forward, but don't save it into the return dict. ```python from mmengine.logging import MessageHub class ToyModel(BaseModel): def __init__(self) -> None: super().__init__() self.linear = nn.Linear(1, 1) def forward(self, img, label, mode): feat = self.linear(img) loss_tmp = (feat - label).abs() loss = loss_tmp.pow(2) message_hub = MessageHub.get_current_instance() # update the intermediate `loss_tmp` in the message hub message_hub.update_scalar('train/loss_tmp', loss_tmp.sum()) return dict(loss=loss) ``` Add the `loss_tmp` into the config: ```python log_processor = dict( type='LogProcessor', window_size=20, by_epoch=True, custom_cfg=[ # statistic the loss_tmp with the averaged value dict( data_src='loss_tmp', window_size=20, method_name='mean') ]) ``` The `loss_tmp` will be added to the output log: ``` 08/21 03:40:31 - mmengine - INFO - Epoch(train) [1][10/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0026 data_time: 0.0008 loss_tmp: 0.0097 loss: 0.0000 08/21 03:40:31 - mmengine - INFO - Epoch(train) [1][20/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0028 data_time: 0.0013 loss_tmp: 0.0065 loss: 0.0000 ``` ## Export the debug log To export the debug log to the `work_dir`, you can set log_level in config file as follows: ``` log_level='DEBUG' ``` ``` 08/21 18:16:22 - mmengine - DEBUG - Get class `LocalVisBackend` from "vis_backend" registry in "mmengine" 08/21 18:16:22 - mmengine - DEBUG - An `LocalVisBackend` instance is built from registry, its implementation can be found in mmengine.visualization.vis_backend 08/21 18:16:22 - mmengine - DEBUG - Get class `RuntimeInfoHook` from "hook" registry in "mmengine" 08/21 18:16:22 - mmengine - DEBUG - An `RuntimeInfoHook` instance is built from registry, its implementation can be found in mmengine.hooks.runtime_info_hook 08/21 18:16:22 - mmengine - DEBUG - Get class `IterTimerHook` from "hook" registry in "mmengine" ... ``` Besides, logs of different ranks will be saved in `debug` mode if you are training your model with the shared storage. The hierarchy of the log is as follows: ```text ./tmp ├── tmp.log ├── tmp_rank1.log ├── tmp_rank2.log ├── tmp_rank3.log ├── tmp_rank4.log ├── tmp_rank5.log ├── tmp_rank6.log └── tmp_rank7.log ... └── tmp_rank63.log ``` The log of Multiple machines with independent storage: ```text # device: 0: work_dir/ └── exp_name_logs ├── exp_name.log ├── exp_name_rank1.log ├── exp_name_rank2.log ├── exp_name_rank3.log ... └── exp_name_rank7.log # device: 7: work_dir/ └── exp_name_logs ├── exp_name_rank56.log ├── exp_name_rank57.log ├── exp_name_rank58.log ... └── exp_name_rank63.log ```