Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | 
         @@ -2660,6 +2660,9 @@ Training data to train the models is released in its entirety. For more details, 
     | 
|
| 2660 | 
         | 
| 2661 | 
         
             
            ## Usage
         
     | 
| 2662 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 2663 | 
         | 
| 2664 | 
         
             
            ```python
         
     | 
| 2665 | 
         
             
            import torch
         
     | 
| 
         @@ -2671,7 +2674,7 @@ def mean_pooling(model_output, attention_mask): 
     | 
|
| 2671 | 
         
             
                input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
         
     | 
| 2672 | 
         
             
                return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
         
     | 
| 2673 | 
         | 
| 2674 | 
         
            -
            sentences = ['What is TSNE?', 'Who is Laurens van der Maaten?']
         
     | 
| 2675 | 
         | 
| 2676 | 
         
             
            tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
         
     | 
| 2677 | 
         
             
            model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1-unsupervised', trust_remote_code=True)
         
     | 
| 
         | 
|
| 2660 | 
         | 
| 2661 | 
         
             
            ## Usage
         
     | 
| 2662 | 
         | 
| 2663 | 
         
            +
            Note `nomic-embed-text` requires prefixes! We support the prefixes `[search_query, search_document, classification, clustering]`.
         
     | 
| 2664 | 
         
            +
            For retrieval applications, you should prepend `search_document` for all your documents and `search_query` for your queries.
         
     | 
| 2665 | 
         
            +
             
     | 
| 2666 | 
         | 
| 2667 | 
         
             
            ```python
         
     | 
| 2668 | 
         
             
            import torch
         
     | 
| 
         | 
|
| 2674 | 
         
             
                input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
         
     | 
| 2675 | 
         
             
                return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
         
     | 
| 2676 | 
         | 
| 2677 | 
         
            +
            sentences = ['search_query: What is TSNE?', 'search_query: Who is Laurens van der Maaten?']
         
     | 
| 2678 | 
         | 
| 2679 | 
         
             
            tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
         
     | 
| 2680 | 
         
             
            model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1-unsupervised', trust_remote_code=True)
         
     |