Add files using upload-large-folder tool
Browse files- .gitattributes +2 -0
- README.md +228 -0
- chat_template.jinja +54 -0
- genai_config.json +50 -0
- model.onnx +3 -0
- model.onnx.data +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +3 -0
- tokenizer_config.json +194 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
model.onnx.data filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- small-language-model
|
5 |
+
- jee
|
6 |
+
- exam-centric
|
7 |
+
- indian-education
|
8 |
+
- reinforcement-learning
|
9 |
+
- supervised-finetuning
|
10 |
+
- model-merging
|
11 |
+
- rejection-sampling
|
12 |
+
- mathematics
|
13 |
+
- ai4education
|
14 |
+
- physicswallah
|
15 |
+
- onnx
|
16 |
+
- onnxruntime-genai
|
17 |
+
- onnxruntime
|
18 |
+
language:
|
19 |
+
- en
|
20 |
+
library_name: onnxruntime-genai
|
21 |
+
base_model_relation: quantized
|
22 |
+
base_model: Prince-1/Aryabhata-1.0
|
23 |
+
pipeline_tag: text-generation
|
24 |
+
model_creator: Physics Wallah AI Research
|
25 |
+
model_type: Causal decoder-based model
|
26 |
+
---
|
27 |
+
|
28 |
+
# Aryabhatta 1.0 : An exam-focused language model for JEE Math
|
29 |
+
|
30 |
+

|
31 |
+
|
32 |
+
## Overview
|
33 |
+
|
34 |
+
**Aryabhata 1.0** is a 7B parameter small language model for mathematics developed by **Physics Wallah AI Research**, optimized for high-stakes Indian competitive exams like **JEE Mains**. Despite its compact size, Aryabhata 1.0 achieves **state-of-the-art performance** on exam-centric reasoning tasks with impressive **token efficiency** and low inference cost.
|
35 |
+
|
36 |
+
|
37 |
+
> 🚧 *Aryabhata 1.0 is an **experimental release**. We are actively seeking feedback — please contribute in the Discussion tab of this repo.*
|
38 |
+
---
|
39 |
+
|
40 |
+
## 🧠 Key Features
|
41 |
+
|
42 |
+
- **Architecture**: 7B parameter causal decoder-based model.
|
43 |
+
- **Exam-Centric Optimization**: Specifically tuned for JEE-level Mathematics reasoning.
|
44 |
+
- **High Accuracy**:
|
45 |
+
- **86%** on **JEE Mains January 2025** session.
|
46 |
+
- **90.2%** on **JEE Mains April 2025** session.
|
47 |
+
- **Token Efficiency**: Operates effectively around a **~2K token window**, compared to ~8K required by other reasoning models.
|
48 |
+
- **Compute Efficient**: Trained on a **1x2 NVIDIA H100 GPU** using optimized pipeline.
|
49 |
+
|
50 |
+
---
|
51 |
+
|
52 |
+
## 🛠️ Training Details
|
53 |
+
|
54 |
+
- **Training Data**: ~130K problem-solution pairs curated from proprietary Physics Wallah exam datasets.
|
55 |
+
- **Training Pipeline**:
|
56 |
+
- **Model Merging**
|
57 |
+
- **Rejection Sampling**
|
58 |
+
- **Supervised Fine-Tuning (SFT)**
|
59 |
+
- **Reinforcement Learning with Verifiable Rewards (RLVR)**
|
60 |
+
|
61 |
+
### 🔀 Model Merging
|
62 |
+
We began with model merging (Weighted average) to build a strong initialization (Aryabhata 0.5) by combining diverse model capabilities:
|
63 |
+
* Qwen 2.5 Math: A robust math-centric LLM with solid symbolic math foundations.
|
64 |
+
* Ace Math: An enhanced version of Qwen 2.5 Math, fine-tuned by NVIDIA for improved accuracy in mathematics benchmarks.
|
65 |
+
* DeepSeek R1 Distill Qwen: A long-form reasoning model, fine-tuned on reasoning traces distilled from DeepSeek R1.
|
66 |
+
|
67 |
+
### 📚 Data Curation + Rejection Sampling
|
68 |
+
We extracted ~250K raw questions from Physics Wallah's internal database and applied aggressive filtering and cleaning:
|
69 |
+
* Removed: diagram-based, non-English, and option-heavy questions.
|
70 |
+
* Kept: questions matching the distribution of JEE Main 2019–2024.
|
71 |
+
Final curated dataset: ~130K high-quality questions.
|
72 |
+
|
73 |
+
For each question:
|
74 |
+
* Generated 4 CoTs using Aryabhata 0.5.
|
75 |
+
* Retained only those leading to correct final answers.
|
76 |
+
|
77 |
+
Resulting Dataset:
|
78 |
+
* ~100K questions
|
79 |
+
* ~350K high-quality CoTs
|
80 |
+
|
81 |
+
We used this dataset for SFT.
|
82 |
+
|
83 |
+
### 🎯 Reinforcement Learning with Verifiable Rewards (RLVR)
|
84 |
+
We used a custom in-house variant of Group Relative Policy Optimization (GRPO), adapted for math-specific reward functions.
|
85 |
+
* Removed KL-divergence penalty
|
86 |
+
* Removed clipping
|
87 |
+
|
88 |
+
We used RLVR on the remaining ~30K questions.
|
89 |
+
|
90 |
+
This multi-phase training strategy allows Aryabhata 1.0 to capture **pedagogy-aligned reasoning patterns**, making it highly effective for solving real student queries in mathematics.
|
91 |
+
|
92 |
+
---
|
93 |
+
|
94 |
+
## 📊 Performance Highlights
|
95 |
+
|
96 |
+
### Evaluation Setup
|
97 |
+
All evaluations were performed with temperature = 0.0, and we report pass@1 accuracy.
|
98 |
+
|
99 |
+
#### Evaluation Datasets
|
100 |
+
We evaluated the model on two sets of official JEE Mains 2025 mathematics papers:
|
101 |
+
* January Session: 10 question papers containing 250 questions.
|
102 |
+
* April Session: 9 question papers containing 225 questions.
|
103 |
+
|
104 |
+
Each paper includes a mix of:
|
105 |
+
* Multiple Choice Questions (MCQs) with one correct option
|
106 |
+
* Numeric Answer Type (NAT) questions requiring precise numerical responses
|
107 |
+
|
108 |
+
#### Evaluation Metric
|
109 |
+
We used a composite evaluation metric to reflect real-world grading rigor and reduce false positives:
|
110 |
+
|
111 |
+
1. Float Match
|
112 |
+
* Compares predicted and target answers within a tolerance (±1e-9)
|
113 |
+
* Handles rounding artifacts and small numerical errors robustly
|
114 |
+
2. String Match
|
115 |
+
* Used for symbolic answers (e.g., fractions, radicals)
|
116 |
+
* Uses strict exact match — predictions must match ground truth character-for-character
|
117 |
+
3. LLM-as-Judge (GPT-4o-mini)
|
118 |
+
* Used for Mathematical equivalence for ambiguous formats
|
119 |
+
|
120 |
+
### 🔹 Accuracy Comparison Across Models
|
121 |
+

|
122 |
+
> *Aryabhata has the best accuracy on JEE Main Maths, on par with frontier models*
|
123 |
+
|
124 |
+
### 🔹 Accuracy vs Token Usage
|
125 |
+

|
126 |
+
> *Aryabhata is on par with frontier models in terms of accuracy vs token usage*
|
127 |
+
|
128 |
+
---
|
129 |
+
|
130 |
+
## 🔧 Intended Use
|
131 |
+
|
132 |
+
**Primary Use Cases**:
|
133 |
+
- Competitive exam preparation (JEE Main level mathematics problems)
|
134 |
+
- Question answering and doubt-solving systems
|
135 |
+
- Educational tutoring and concept explanation
|
136 |
+
|
137 |
+
|
138 |
+
## 💡 How to Use
|
139 |
+
|
140 |
+
### 🧪 Using with 🤗 Transformers
|
141 |
+
|
142 |
+
```python
|
143 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
144 |
+
|
145 |
+
model_id = "PhysicsWallahAI/Aryabhata-1.0"
|
146 |
+
|
147 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
148 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
149 |
+
|
150 |
+
|
151 |
+
# Define stop strings
|
152 |
+
stop_strings = ["<|im_end|>", "<|end|>", "<im_start|>", "```python\n", "<|im_start|>", "]}}]}}]"]
|
153 |
+
|
154 |
+
def strip_bad_tokens(s, stop_strings):
|
155 |
+
for suffix in stop_strings:
|
156 |
+
if s.endswith(suffix):
|
157 |
+
return s[:-len(suffix)]
|
158 |
+
return s
|
159 |
+
|
160 |
+
|
161 |
+
# Create generation config (can also set temperature, top_p, etc.)
|
162 |
+
generation_config = GenerationConfig(
|
163 |
+
max_new_tokens=4096,
|
164 |
+
stop_strings = stop_strings
|
165 |
+
)
|
166 |
+
|
167 |
+
query = 'Find all the values of \\sqrt[3]{1}'
|
168 |
+
messages = [{'role': 'system', 'content': 'Think step-by-step; put only the final answer inside \\boxed{}.'},
|
169 |
+
{'role': 'user', 'content': query}]
|
170 |
+
|
171 |
+
text = tokenizer.apply_chat_template(
|
172 |
+
messages,
|
173 |
+
tokenize=False,
|
174 |
+
add_generation_prompt=True
|
175 |
+
)
|
176 |
+
inputs = tokenizer([text], return_tensors="pt")
|
177 |
+
outputs = model.generate(**inputs, generation_config=generation_config, tokenizer=tokenizer)
|
178 |
+
|
179 |
+
print(strip_bad_tokens(tokenizer.decode(outputs[0], skip_special_tokens=True), stop_strings))
|
180 |
+
````
|
181 |
+
|
182 |
+
---
|
183 |
+
|
184 |
+
### ⚡ Using with vLLM
|
185 |
+
|
186 |
+
To run the model efficiently using vLLM:
|
187 |
+
|
188 |
+
```python
|
189 |
+
from vllm import LLM, SamplingParams
|
190 |
+
|
191 |
+
# Initialize model (downloads from Hugging Face if not local)
|
192 |
+
llm = LLM(model="PhysicsWallahAI/Aryabhata-1.0")
|
193 |
+
|
194 |
+
# Define prompt and sampling configuration
|
195 |
+
query = 'Find all the values of \\sqrt[3]{1}'
|
196 |
+
messages = [{'role': 'system', 'content': 'Think step-by-step; put only the final answer inside \\boxed{}.'},
|
197 |
+
{'role': 'user', 'content': query}]
|
198 |
+
sampling_params = SamplingParams(temperature=0.0, max_tokens=4*1024, stop=["<|im_end|>", "<|end|>", "<im_start|>", "```python\n", "<|im_start|>", "]}}]}}]"])
|
199 |
+
|
200 |
+
# Run inference
|
201 |
+
results = llm.chat(messages, sampling_params)
|
202 |
+
|
203 |
+
# Print result
|
204 |
+
print(results[0].outputs[0].text.strip())
|
205 |
+
```
|
206 |
+
|
207 |
+
---
|
208 |
+
|
209 |
+
## 🚀 Roadmap
|
210 |
+
|
211 |
+
**Aryabhata 2.0** (Upcoming):
|
212 |
+
- Extending domain coverage to **Physics** and **Chemistry**
|
213 |
+
- Supporting **JEE Advanced**, **NEET**, and **Foundation syllabus**
|
214 |
+
- Further optimization for affordability and accuracy in real-time deployments
|
215 |
+
|
216 |
+
---
|
217 |
+
|
218 |
+
## 🤝 Citation
|
219 |
+
|
220 |
+
If you use this model, please cite:
|
221 |
+
|
222 |
+
```bibtex
|
223 |
+
@misc{Aryabhata2025,
|
224 |
+
title = {Aryabhata 1.0: A compact, exam-focused language model tailored for mathematics in Indian competitive exams, especially JEE Main.},
|
225 |
+
author = {Physics Wallah AI Research},
|
226 |
+
year = {2025},
|
227 |
+
note = {\url{https://huggingface.co/PhysicsWallahAI/Aryabhata-1.0}},
|
228 |
+
}
|
chat_template.jinja
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{%- if tools %}
|
2 |
+
{{- '<|im_start|>system\n' }}
|
3 |
+
{%- if messages[0]['role'] == 'system' %}
|
4 |
+
{{- messages[0]['content'] }}
|
5 |
+
{%- else %}
|
6 |
+
{{- 'Please reason step by step, and put your final answer within \\boxed{}.' }}
|
7 |
+
{%- endif %}
|
8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
9 |
+
{%- for tool in tools %}
|
10 |
+
{{- "\n" }}
|
11 |
+
{{- tool | tojson }}
|
12 |
+
{%- endfor %}
|
13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
14 |
+
{%- else %}
|
15 |
+
{%- if messages[0]['role'] == 'system' %}
|
16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
17 |
+
{%- else %}
|
18 |
+
{{- '<|im_start|>system\nPlease reason step by step, and put your final answer within \\boxed{}.<|im_end|>\n' }}
|
19 |
+
{%- endif %}
|
20 |
+
{%- endif %}
|
21 |
+
{%- for message in messages %}
|
22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
24 |
+
{%- elif message.role == "assistant" %}
|
25 |
+
{{- '<|im_start|>' + message.role }}
|
26 |
+
{%- if message.content %}
|
27 |
+
{{- '\n' + message.content }}
|
28 |
+
{%- endif %}
|
29 |
+
{%- for tool_call in message.tool_calls %}
|
30 |
+
{%- if tool_call.function is defined %}
|
31 |
+
{%- set tool_call = tool_call.function %}
|
32 |
+
{%- endif %}
|
33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
34 |
+
{{- tool_call.name }}
|
35 |
+
{{- '", "arguments": ' }}
|
36 |
+
{{- tool_call.arguments | tojson }}
|
37 |
+
{{- '}\n</tool_call>' }}
|
38 |
+
{%- endfor %}
|
39 |
+
{{- '<|im_end|>\n' }}
|
40 |
+
{%- elif message.role == "tool" %}
|
41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
42 |
+
{{- '<|im_start|>user' }}
|
43 |
+
{%- endif %}
|
44 |
+
{{- '\n<tool_response>\n' }}
|
45 |
+
{{- message.content }}
|
46 |
+
{{- '\n</tool_response>' }}
|
47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
48 |
+
{{- '<|im_end|>\n' }}
|
49 |
+
{%- endif %}
|
50 |
+
{%- endif %}
|
51 |
+
{%- endfor %}
|
52 |
+
{%- if add_generation_prompt %}
|
53 |
+
{{- '<|im_start|>assistant\n' }}
|
54 |
+
{%- endif %}
|
genai_config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": {
|
3 |
+
"bos_token_id": 151643,
|
4 |
+
"context_length": 131072,
|
5 |
+
"decoder": {
|
6 |
+
"session_options": {
|
7 |
+
"log_id": "onnxruntime-genai",
|
8 |
+
"provider_options": []
|
9 |
+
},
|
10 |
+
"filename": "model.onnx",
|
11 |
+
"head_size": 128,
|
12 |
+
"hidden_size": 3584,
|
13 |
+
"inputs": {
|
14 |
+
"input_ids": "input_ids",
|
15 |
+
"attention_mask": "attention_mask",
|
16 |
+
"position_ids": "position_ids",
|
17 |
+
"past_key_names": "past_key_values.%d.key",
|
18 |
+
"past_value_names": "past_key_values.%d.value"
|
19 |
+
},
|
20 |
+
"outputs": {
|
21 |
+
"logits": "logits",
|
22 |
+
"present_key_names": "present.%d.key",
|
23 |
+
"present_value_names": "present.%d.value"
|
24 |
+
},
|
25 |
+
"num_attention_heads": 28,
|
26 |
+
"num_hidden_layers": 28,
|
27 |
+
"num_key_value_heads": 4
|
28 |
+
},
|
29 |
+
"eos_token_id": 151643,
|
30 |
+
"pad_token_id": 151643,
|
31 |
+
"type": "qwen2",
|
32 |
+
"vocab_size": 152064
|
33 |
+
},
|
34 |
+
"search": {
|
35 |
+
"diversity_penalty": 0.0,
|
36 |
+
"do_sample": false,
|
37 |
+
"early_stopping": true,
|
38 |
+
"length_penalty": 1.0,
|
39 |
+
"max_length": 131072,
|
40 |
+
"min_length": 0,
|
41 |
+
"no_repeat_ngram_size": 0,
|
42 |
+
"num_beams": 1,
|
43 |
+
"num_return_sequences": 1,
|
44 |
+
"past_present_share_buffer": false,
|
45 |
+
"repetition_penalty": 1.0,
|
46 |
+
"temperature": 1.0,
|
47 |
+
"top_k": 1,
|
48 |
+
"top_p": 1.0
|
49 |
+
}
|
50 |
+
}
|
model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:395e73c4753dfcd56a866f02704e187020507a2c3312cb3bcbe56465000f5100
|
3 |
+
size 688147
|
model.onnx.data
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e4dca4d35cceb00909023e30a767da00b18af004a05844639813fc283f093e8
|
3 |
+
size 15264787456
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin▁of▁sentence|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end▁of▁sentence|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|end▁of▁sentence|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e20ddafc659ba90242154b55275402edeca0715e5dbb30f56815a4ce081f4893
|
3 |
+
size 11422778
|
tokenizer_config.json
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": null,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"151643": {
|
7 |
+
"content": "<|end▁of▁sentence|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"151644": {
|
15 |
+
"content": "<|User|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": false
|
21 |
+
},
|
22 |
+
"151645": {
|
23 |
+
"content": "<|Assistant|>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": false
|
29 |
+
},
|
30 |
+
"151646": {
|
31 |
+
"content": "<|begin▁of▁sentence|>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false,
|
36 |
+
"special": true
|
37 |
+
},
|
38 |
+
"151647": {
|
39 |
+
"content": "<|EOT|>",
|
40 |
+
"lstrip": false,
|
41 |
+
"normalized": false,
|
42 |
+
"rstrip": false,
|
43 |
+
"single_word": false,
|
44 |
+
"special": false
|
45 |
+
},
|
46 |
+
"151648": {
|
47 |
+
"content": "<think>",
|
48 |
+
"lstrip": false,
|
49 |
+
"normalized": false,
|
50 |
+
"rstrip": false,
|
51 |
+
"single_word": false,
|
52 |
+
"special": false
|
53 |
+
},
|
54 |
+
"151649": {
|
55 |
+
"content": "</think>",
|
56 |
+
"lstrip": false,
|
57 |
+
"normalized": false,
|
58 |
+
"rstrip": false,
|
59 |
+
"single_word": false,
|
60 |
+
"special": false
|
61 |
+
},
|
62 |
+
"151650": {
|
63 |
+
"content": "<|quad_start|>",
|
64 |
+
"lstrip": false,
|
65 |
+
"normalized": false,
|
66 |
+
"rstrip": false,
|
67 |
+
"single_word": false,
|
68 |
+
"special": true
|
69 |
+
},
|
70 |
+
"151651": {
|
71 |
+
"content": "<|quad_end|>",
|
72 |
+
"lstrip": false,
|
73 |
+
"normalized": false,
|
74 |
+
"rstrip": false,
|
75 |
+
"single_word": false,
|
76 |
+
"special": true
|
77 |
+
},
|
78 |
+
"151652": {
|
79 |
+
"content": "<|vision_start|>",
|
80 |
+
"lstrip": false,
|
81 |
+
"normalized": false,
|
82 |
+
"rstrip": false,
|
83 |
+
"single_word": false,
|
84 |
+
"special": true
|
85 |
+
},
|
86 |
+
"151653": {
|
87 |
+
"content": "<|vision_end|>",
|
88 |
+
"lstrip": false,
|
89 |
+
"normalized": false,
|
90 |
+
"rstrip": false,
|
91 |
+
"single_word": false,
|
92 |
+
"special": true
|
93 |
+
},
|
94 |
+
"151654": {
|
95 |
+
"content": "<|vision_pad|>",
|
96 |
+
"lstrip": false,
|
97 |
+
"normalized": false,
|
98 |
+
"rstrip": false,
|
99 |
+
"single_word": false,
|
100 |
+
"special": true
|
101 |
+
},
|
102 |
+
"151655": {
|
103 |
+
"content": "<|image_pad|>",
|
104 |
+
"lstrip": false,
|
105 |
+
"normalized": false,
|
106 |
+
"rstrip": false,
|
107 |
+
"single_word": false,
|
108 |
+
"special": true
|
109 |
+
},
|
110 |
+
"151656": {
|
111 |
+
"content": "<|video_pad|>",
|
112 |
+
"lstrip": false,
|
113 |
+
"normalized": false,
|
114 |
+
"rstrip": false,
|
115 |
+
"single_word": false,
|
116 |
+
"special": true
|
117 |
+
},
|
118 |
+
"151657": {
|
119 |
+
"content": "<tool_call>",
|
120 |
+
"lstrip": false,
|
121 |
+
"normalized": false,
|
122 |
+
"rstrip": false,
|
123 |
+
"single_word": false,
|
124 |
+
"special": false
|
125 |
+
},
|
126 |
+
"151658": {
|
127 |
+
"content": "</tool_call>",
|
128 |
+
"lstrip": false,
|
129 |
+
"normalized": false,
|
130 |
+
"rstrip": false,
|
131 |
+
"single_word": false,
|
132 |
+
"special": false
|
133 |
+
},
|
134 |
+
"151659": {
|
135 |
+
"content": "<|fim_prefix|>",
|
136 |
+
"lstrip": false,
|
137 |
+
"normalized": false,
|
138 |
+
"rstrip": false,
|
139 |
+
"single_word": false,
|
140 |
+
"special": false
|
141 |
+
},
|
142 |
+
"151660": {
|
143 |
+
"content": "<|fim_middle|>",
|
144 |
+
"lstrip": false,
|
145 |
+
"normalized": false,
|
146 |
+
"rstrip": false,
|
147 |
+
"single_word": false,
|
148 |
+
"special": false
|
149 |
+
},
|
150 |
+
"151661": {
|
151 |
+
"content": "<|fim_suffix|>",
|
152 |
+
"lstrip": false,
|
153 |
+
"normalized": false,
|
154 |
+
"rstrip": false,
|
155 |
+
"single_word": false,
|
156 |
+
"special": false
|
157 |
+
},
|
158 |
+
"151662": {
|
159 |
+
"content": "<|fim_pad|>",
|
160 |
+
"lstrip": false,
|
161 |
+
"normalized": false,
|
162 |
+
"rstrip": false,
|
163 |
+
"single_word": false,
|
164 |
+
"special": false
|
165 |
+
},
|
166 |
+
"151663": {
|
167 |
+
"content": "<|repo_name|>",
|
168 |
+
"lstrip": false,
|
169 |
+
"normalized": false,
|
170 |
+
"rstrip": false,
|
171 |
+
"single_word": false,
|
172 |
+
"special": false
|
173 |
+
},
|
174 |
+
"151664": {
|
175 |
+
"content": "<|file_sep|>",
|
176 |
+
"lstrip": false,
|
177 |
+
"normalized": false,
|
178 |
+
"rstrip": false,
|
179 |
+
"single_word": false,
|
180 |
+
"special": false
|
181 |
+
}
|
182 |
+
},
|
183 |
+
"bos_token": "<|begin▁of▁sentence|>",
|
184 |
+
"clean_up_tokenization_spaces": false,
|
185 |
+
"eos_token": "<|end▁of▁sentence|>",
|
186 |
+
"extra_special_tokens": {},
|
187 |
+
"legacy": true,
|
188 |
+
"model_max_length": 16384,
|
189 |
+
"pad_token": "<|end▁of▁sentence|>",
|
190 |
+
"sp_model_kwargs": {},
|
191 |
+
"tokenizer_class": "LlamaTokenizerFast",
|
192 |
+
"unk_token": null,
|
193 |
+
"use_default_system_prompt": false
|
194 |
+
}
|