Xenova HF Staff commited on
Commit
289800b
·
verified ·
1 Parent(s): 0d4cc0f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -2
README.md CHANGED
@@ -8,6 +8,79 @@ tags:
8
  - sentence-transformers
9
  - feature-extraction
10
  - sentence-similarity
11
- - mteb
12
  library_name: transformers.js
13
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  - sentence-transformers
9
  - feature-extraction
10
  - sentence-similarity
 
11
  library_name: transformers.js
12
+ ---
13
+
14
+
15
+ ## Usage (Transformers.js)
16
+
17
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
18
+ ```bash
19
+ npm i @huggingface/transformers
20
+ ```
21
+
22
+ You can then use the model to compute embeddings, as follows:
23
+
24
+ ```js
25
+ import { pipeline } from '@huggingface/transformers';
26
+
27
+ // Create a feature-extraction pipeline
28
+ const extractor = await pipeline('feature-extraction', 'onnx-community/bge-base-en-v1.5-ONNX');
29
+
30
+ // Compute sentence embeddings
31
+ const texts = ['Hello world.', 'Example sentence.'];
32
+ const embeddings = await extractor(texts, { pooling: 'mean', normalize: true });
33
+ console.log(embeddings);
34
+ // Tensor {
35
+ // dims: [ 2, 768 ],
36
+ // type: 'float32',
37
+ // data: Float32Array(1536) [ 0.019079938530921936, 0.041718777269124985, ... ],
38
+ // size: 1536
39
+ // }
40
+
41
+ console.log(embeddings.tolist()); // Convert embeddings to a JavaScript list
42
+ // [
43
+ // [ 0.019079938530921936, 0.041718777269124985, 0.037672195583581924, ... ],
44
+ // [ 0.020936904475092888, 0.020080938935279846, -0.00787576474249363, ... ]
45
+ // ]
46
+ ```
47
+
48
+ You can also use the model for retrieval. For example:
49
+ ```js
50
+ import { pipeline, cos_sim } from '@huggingface/transformers';
51
+
52
+ // Create a feature-extraction pipeline
53
+ const extractor = await pipeline('feature-extraction', 'onnx-community/bge-base-en-v1.5-ONNX');
54
+
55
+ // List of documents you want to embed
56
+ const texts = [
57
+ 'Hello world.',
58
+ 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.',
59
+ 'I love pandas so much!',
60
+ ];
61
+
62
+ // Compute sentence embeddings
63
+ const embeddings = await extractor(texts, { pooling: 'mean', normalize: true });
64
+
65
+ // Prepend recommended query instruction for retrieval.
66
+ const query_prefix = 'Represent this sentence for searching relevant passages: '
67
+ const query = query_prefix + 'What is a panda?';
68
+ const query_embeddings = await extractor(query, { pooling: 'mean', normalize: true });
69
+
70
+ // Sort by cosine similarity score
71
+ const scores = embeddings.tolist().map(
72
+ (embedding, i) => ({
73
+ id: i,
74
+ score: cos_sim(query_embeddings.data, embedding),
75
+ text: texts[i],
76
+ })
77
+ ).sort((a, b) => b.score - a.score);
78
+ console.log(scores);
79
+ // [
80
+ // { id: 1, score: 0.7787772374597298, text: 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.' },
81
+ // { id: 2, score: 0.7071589521880506, text: 'I love pandas so much!' },
82
+ // { id: 0, score: 0.4252782730390429, text: 'Hello world.' }
83
+ // ]
84
+ ```
85
+
86
+ ---