--- license: apache-2.0 language: - zh - en pipeline_tag: text-generation library_name: transformers ---

GitHub Repo | Technical Report | Join Us

👋 Contact us in Discord and WeChat

## What's New - [2025.09.05] **MiniCPM4.1** series are released! This series is a hybrid reasoning model, which can be used in both deep reasoning mode and non-reasoning mode. 🔥🔥🔥 - [2025.06.06] **MiniCPM4** series are released! This model achieves ultimate efficiency improvements while maintaining optimal performance at the same scale! It can achieve over 5x generation acceleration on typical end-side chips! You can find technical report [here](https://arxiv.org/abs/2506.07900).🔥🔥🔥 ## MiniCPM4 and MiniCPM4.1 Series MiniCPM4 and MiniCPM4.1 series are highly efficient large language models (LLMs) designed explicitly for end-side devices, which achieves this efficiency through systematic innovation in four key dimensions: model architecture, training data, training algorithms, and inference systems. - [MiniCPM4.1-8B](https://huggingface.co/openbmb/MiniCPM4.1-8B): The latest version of MiniCPM4, with 8B parameters, support fusion thinking. (**<-- you are here**) - [MiniCPM4.1-8B-GPTQ](https://huggingface.co/openbmb/MiniCPM4.1-8B-GPTQ): MiniCPM4.1-8B in GPTQ format. - [MiniCPM4.1-8B-AutoAWQ](https://huggingface.co/openbmb/MiniCPM4.1-8B-AutoAWQ): MiniCPM4.1-8B in AutoAWQ format. - [MiniCPM-4.1-8B-Marlin](https://huggingface.co/openbmb/MiniCPM-4.1-8B-Marlin): MiniCPM4.1-8B in Marlin format. - [MiniCPM4.1-8B-GGUF](https://huggingface.co/openbmb/MiniCPM4.1-8B-GGUF): MiniCPM4.1-8B in GGUF format. - [MiniCPM4.1-8B-MLX](https://huggingface.co/openbmb/MiniCPM4.1-8B-MLX): MiniCPM4.1-8B in MLX format. - [MiniCPM4.1-8B-Eagle3](https://huggingface.co/openbmb/MiniCPM4.1-8B-Eagle3): Eagle3 model for MiniCPM4.1-8B. - **MiniCPM4 Series**
Click to expand all MiniCPM4 series models - [**MiniCPM4-8B**](https://huggingface.co/openbmb/MiniCPM4-8B): The flagship model with 8B parameters, trained on 8T tokens - [**MiniCPM4-0.5B**](https://huggingface.co/openbmb/MiniCPM4-0.5B): Lightweight version with 0.5B parameters, trained on 1T tokens - [**MiniCPM4-8B-Eagle-FRSpec**](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec): Eagle head for FRSpec, accelerating speculative inference - [**MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu**](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-FRSpec-QAT-cpmcu): Eagle head with QAT for FRSpec, integrating speculation and quantization for ultra acceleration - [**MiniCPM4-8B-Eagle-vLLM**](https://huggingface.co/openbmb/MiniCPM4-8B-Eagle-vLLM): Eagle head in vLLM format for speculative inference - [**MiniCPM4-8B-marlin-Eagle-vLLM**](https://huggingface.co/openbmb/MiniCPM4-8B-marlin-Eagle-vLLM): Quantized Eagle head for vLLM format - [**BitCPM4-0.5B**](https://huggingface.co/openbmb/BitCPM4-0.5B): Extreme ternary quantization of MiniCPM4-0.5B, achieving 90% bit width reduction - [**BitCPM4-1B**](https://huggingface.co/openbmb/BitCPM4-1B): Extreme ternary quantization of MiniCPM3-1B, achieving 90% bit width reduction - [**MiniCPM4-Survey**](https://huggingface.co/openbmb/MiniCPM4-Survey): Generates trustworthy, long-form survey papers from user queries - [**MiniCPM4-MCP**](https://huggingface.co/openbmb/MiniCPM4-MCP): Integrates MCP tools to autonomously satisfy user requirements
## Introduction MiniCPM4 and MiniCPM4.1 are extremely efficient edge-side large model that has undergone efficient optimization across four dimensions: model architecture, learning algorithms, training data, and inference systems, achieving ultimate efficiency improvements. - 🏗️ **Efficient Model Architecture:** - InfLLM v2 -- Trainable Sparse Attention Mechanism: Adopts a trainable sparse attention mechanism architecture where each token only needs to compute relevance with less than 5% of tokens in 128K long text processing, significantly reducing computational overhead for long texts - 🧠 **Efficient Learning Algorithms:** - Model Wind Tunnel 2.0 -- Efficient Predictable Scaling: Introduces scaling prediction methods for performance of downstream tasks, enabling more precise model training configuration search - BitCPM -- Ultimate Ternary Quantization: Compresses model parameter bit-width to 3 values, achieving 90% extreme model bit-width reduction - Efficient Training Engineering Optimization: Adopts FP8 low-precision computing technology combined with Multi-token Prediction training strategy - 📚 **High-Quality Training Data:** - UltraClean -- High-quality Pre-training Data Filtering and Generation: Builds iterative data cleaning strategies based on efficient data verification, open-sourcing high-quality Chinese and English pre-training dataset [UltraFinweb](https://huggingface.co/datasets/openbmb/Ultra-FineWeb) - UltraChat v2 -- High-quality Supervised Fine-tuning Data Generation: Constructs large-scale high-quality supervised fine-tuning datasets covering multiple dimensions including knowledge-intensive data, reasoning-intensive data, instruction-following data, long text understanding data, and tool calling data - ⚡ **Efficient Inference System:** - CPM.cu -- Lightweight and Efficient CUDA Inference Framework: Integrates sparse attention, model quantization, and speculative sampling to achieve efficient prefilling and decoding - ArkInfer -- Cross-platform Deployment System: Supports efficient deployment across multiple backend environments, providing flexible cross-platform adaptation capabilities ## Usage ### Inference with [CPM.cu](https://github.com/OpenBMB/cpm.cu) We recommend using [CPM.cu](https://github.com/OpenBMB/cpm.cu) for the inference of MiniCPM4 and MiniCPM4.1. CPM.cu is a CUDA inference framework developed by OpenBMB, which integrates efficient sparse, speculative sampling, and quantization techniques, fully leveraging the efficiency advantages of MiniCPM4 and MiniCPM4.1. You can install CPM.cu by running the following command: ```bash git clone https://github.com/OpenBMB/cpm.cu.git --recursive cd cpm.cu python3 setup.py install ``` MiniCPM4.1 natively supports context lengths of up to 65,536(64k) tokens. To reproduce the long-text acceleration effect in the paper, we recommend using the LongRoPE factors that have been validated. Change the `rope_scaling` field in the `config.json` file as the following to enable LongRoPE. ```json { ..., "rope_scaling": { "rope_type": "longrope", "long_factor": [0.9982316082870437, 1.033048153422584, 1.0749920956484724, 1.1255096879436193, 1.1863348602111476, 1.259543828902579, 1.3476188888731149, 1.4535223827776373, 1.5807816745852985, 1.7335856049489526, 1.9168922912975785, 2.1365471404135326, 2.3994084200118646, 2.713475511863602, 3.0880118452194134, 3.533650295140154, 4.062463396503134, 4.687974098908333, 5.425075306704039, 6.289818967956352, 7.29902962722721, 8.6357018163639, 10.210822723989212, 12.053807765671676, 14.193944598909404, 16.65780676784363, 19.463620727694074, 22.628311203524586, 26.150106147261315, 30.02526691405111, 34.23183327975347, 38.73811934094828, 43.502489489729555, 48.47627117965394, 53.61139491762471, 58.857366522037935, 64.16798299215064, 69.51359464319125, 74.86555458220285, 80.21497790341579, 85.55322183307433, 90.89611806932027, 96.26245306514224, 101.68269304046481, 107.18619510219668, 112.82253283014026, 118.63764063163615, 119.88866203644656, 120.9462882391725, 121.837565139014, 122.58663780572562, 123.2147719894291, 123.74049454862576, 124.17980424685767, 124.54641761955492, 124.85202548028222, 125.10654406389756, 125.31835105170659, 125.49450117164764, 125.64091910903052, 125.76256945356558, 125.86360463815589, 125.94749252260765, 126.01712561287873], "short_factor": [0.9982316082870437, 1.033048153422584, 1.0749920956484724, 1.1255096879436193, 1.1863348602111476, 1.259543828902579, 1.3476188888731149, 1.4535223827776373, 1.5807816745852985, 1.7335856049489526, 1.9168922912975785, 2.1365471404135326, 2.3994084200118646, 2.713475511863602, 3.0880118452194134, 3.533650295140154, 4.062463396503134, 4.687974098908333, 5.425075306704039, 6.289818967956352, 7.29902962722721, 8.6357018163639, 10.210822723989212, 12.053807765671676, 14.193944598909404, 16.65780676784363, 19.463620727694074, 22.628311203524586, 26.150106147261315, 30.02526691405111, 34.23183327975347, 38.73811934094828, 43.502489489729555, 48.47627117965394, 53.61139491762471, 58.857366522037935, 64.16798299215064, 69.51359464319125, 74.86555458220285, 80.21497790341579, 85.55322183307433, 90.89611806932027, 96.26245306514224, 101.68269304046481, 107.18619510219668, 112.82253283014026, 118.63764063163615, 119.88866203644656, 120.9462882391725, 121.837565139014, 122.58663780572562, 123.2147719894291, 123.74049454862576, 124.17980424685767, 124.54641761955492, 124.85202548028222, 125.10654406389756, 125.31835105170659, 125.49450117164764, 125.64091910903052, 125.76256945356558, 125.86360463815589, 125.94749252260765, 126.01712561287873], "original_max_position_embeddings": 65536 } } ``` After modification, you can run the following command to reproduce the long-context acceleration effect (the script will automatically download the model weights from HuggingFace) ```bash python3 tests/test_generate.py ``` You can run the following command to infer with EAGLE3 speculative decoding algorithm. ```bash python3 -m cpmcu.cli \ --model-path $BASE_MODEL_PATH \ --draft-model-path $EAGLE3_DRAFT_MODEL_PATH \ --prompt-text "Write an article about Artificial Intelligence." \ --use-eagle3 true ``` For more details about CPM.cu, please refer to [the repo CPM.cu](https://github.com/OpenBMB/cpm.cu). ### Hybird Reasoning Mode MiniCPM4.1 supports hybrid reasoning mode, which can be used in both deep reasoning mode and non-reasoning mode. To enable hybrid reasoning mode. User can set `enable_thinking=True` in `tokenizer.apply_chat_template` to enable hybrid reasoning mode, and set `enable_thinking=False` to enable non-reasoning mode. Similarly, user can directly add `/no_think` at the end of the query to enable non-reasoning mode. If not add any special token or add `/think` at the end of the query, the model will enable reasoning mode. ```python # Enable reasoning mode prompt_text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True ) # Enable non-reasoning mode prompt_text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False ) ``` ### Inference with Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch torch.manual_seed(0) path = 'openbmb/MiniCPM4.1-8B' device = "cuda" tokenizer = AutoTokenizer.from_pretrained(path) model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch.bfloat16, device_map=device, trust_remote_code=True) # User can directly use the chat interface # responds, history = model.chat(tokenizer, "Write an article about Artificial Intelligence.", temperature=0.7, top_p=0.7) # print(responds) # User can also use the generate interface messages = [ {"role": "user", "content": "Write an article about Artificial Intelligence."}, ] prompt_text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([prompt_text], return_tensors="pt").to(device) model_outputs = model.generate( **model_inputs, max_new_tokens=32768, top_p=0.95, temperature=0.6 ) output_token_ids = [ model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs['input_ids'])) ] responses = tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0] print(responses) ``` MiniCPM4.1-8B supports `InfLLM v2`, a sparse attention mechanism designed for efficient long-sequence inference. It requires the [infllmv2_cuda_impl](https://github.com/OpenBMB/infllmv2_cuda_impl) library. You can install it by running the following command: ```bash git clone -b feature_infer https://github.com/OpenBMB/infllmv2_cuda_impl.git cd infllmv2_cuda_impl git submodule update --init --recursive pip install -e . # or python setup.py install ``` To enable InfLLM v2, you need to add the `sparse_config` field in `config.json`: ```json { ..., "sparse_config": { "kernel_size": 32, "kernel_stride": 16, "init_blocks": 1, "block_size": 64, "window_size": 2048, "topk": 64, "use_nope": false, "dense_len": 8192 } } ``` These parameters control the behavior of InfLLM v2: * `kernel_size` (default: 32): The size of semantic kernels. * `kernel_stride` (default: 16): The stride between adjacent kernels. * `init_blocks` (default: 1): The number of initial blocks that every query token attends to. This ensures attention to the beginning of the sequence. * `block_size` (default: 64): The block size for key-value blocks. * `window_size` (default: 2048): The size of the local sliding window. * `topk` (default: 64): The specifies that each token computes attention with only the top-k most relevant key-value blocks. * `use_nope` (default: false): Whether to use the NOPE technique in block selection for improved performance. * `dense_len` (default: 8192): Since Sparse Attention offers limited benefits for short sequences, the model can use standard (dense) attention for shorter texts. The model will use dense attention for sequences with a token length below `dense_len` and switch to sparse attention for sequences exceeding this length. Set this to `-1` to always use sparse attention regardless of sequence length. MiniCPM4.1 natively supports context lengths of up to 65,536(64k) tokens. For conversations where the total length (including both input and output) significantly exceeds this limit, we recommend using RoPE scaling techniques for effective handling of long texts. We have validated the model's performance on context lengths of up to 131,072 tokens by modifying the LongRoPE factor. You can apply the LongRoPE factor modification by modifying the model files. Specifically, in the `config.json` file, adjust the `rope_scaling` fields. ```json { ..., "rope_scaling": { "rope_type": "longrope", "long_factor": [0.9982316082870437, 1.033048153422584, 1.0749920956484724, 1.1255096879436193, 1.1863348602111476, 1.259543828902579, 1.3476188888731149, 1.4535223827776373, 1.5807816745852985, 1.7335856049489526, 1.9168922912975785, 2.1365471404135326, 2.3994084200118646, 2.713475511863602, 3.0880118452194134, 3.533650295140154, 4.062463396503134, 4.687974098908333, 5.425075306704039, 6.289818967956352, 7.29902962722721, 8.6357018163639, 10.210822723989212, 12.053807765671676, 14.193944598909404, 16.65780676784363, 19.463620727694074, 22.628311203524586, 26.150106147261315, 30.02526691405111, 34.23183327975347, 38.73811934094828, 43.502489489729555, 48.47627117965394, 53.61139491762471, 58.857366522037935, 64.16798299215064, 69.51359464319125, 74.86555458220285, 80.21497790341579, 85.55322183307433, 90.89611806932027, 96.26245306514224, 101.68269304046481, 107.18619510219668, 112.82253283014026, 118.63764063163615, 119.88866203644656, 120.9462882391725, 121.837565139014, 122.58663780572562, 123.2147719894291, 123.74049454862576, 124.17980424685767, 124.54641761955492, 124.85202548028222, 125.10654406389756, 125.31835105170659, 125.49450117164764, 125.64091910903052, 125.76256945356558, 125.86360463815589, 125.94749252260765, 126.01712561287873], "short_factor": [0.9982316082870437, 1.033048153422584, 1.0749920956484724, 1.1255096879436193, 1.1863348602111476, 1.259543828902579, 1.3476188888731149, 1.4535223827776373, 1.5807816745852985, 1.7335856049489526, 1.9168922912975785, 2.1365471404135326, 2.3994084200118646, 2.713475511863602, 3.0880118452194134, 3.533650295140154, 4.062463396503134, 4.687974098908333, 5.425075306704039, 6.289818967956352, 7.29902962722721, 8.6357018163639, 10.210822723989212, 12.053807765671676, 14.193944598909404, 16.65780676784363, 19.463620727694074, 22.628311203524586, 26.150106147261315, 30.02526691405111, 34.23183327975347, 38.73811934094828, 43.502489489729555, 48.47627117965394, 53.61139491762471, 58.857366522037935, 64.16798299215064, 69.51359464319125, 74.86555458220285, 80.21497790341579, 85.55322183307433, 90.89611806932027, 96.26245306514224, 101.68269304046481, 107.18619510219668, 112.82253283014026, 118.63764063163615, 119.88866203644656, 120.9462882391725, 121.837565139014, 122.58663780572562, 123.2147719894291, 123.74049454862576, 124.17980424685767, 124.54641761955492, 124.85202548028222, 125.10654406389756, 125.31835105170659, 125.49450117164764, 125.64091910903052, 125.76256945356558, 125.86360463815589, 125.94749252260765, 126.01712561287873], "original_max_position_embeddings": 65536 } } ``` ### Inference with [SGLang](https://github.com/sgl-project/sglang) #### Speculative Decoding For accelerated inference with speculative decoding, follow these steps: ##### 1. Download MiniCPM4.1 Draft Model First, download the MiniCPM4.1 draft model: ```bash cd /your_path git clone https://huggingface.co/openbmb/MiniCPM4.1-8B-Eagle3 ``` ##### 2. Install EAGLE3-Compatible SGLang The EAGLE3 adaptation PR has been submitted. For now, use our repository for installation: ```bash git clone https://github.com/LDLINGLINGLING/sglang.git cd sglang pip install -e . ``` ##### 3. Launch SGLang Server with Speculative Decoding Start the SGLang server with speculative decoding enabled: ```bash python -m sglang.launch_server \ --model-path "openbmb/MiniCPM4.1-8B" \ --host "127.0.0.1" \ --port 30002 \ --mem-fraction-static 0.9 \ --speculative-algorithm EAGLE3 \ --speculative-draft-model-path "your/path/MiniCPM4_1-8B-Eagle3-bf16" \ --speculative-num-steps 3 \ --speculative-eagle-topk 1 \ --speculative-num-draft-tokens 32 \ --temperature 0.7 ``` ##### 4. Client Usage The client usage remains the same for both standard and speculative decoding: ```python import openai client = openai.Client(base_url=f"http://localhost:30002/v1", api_key="None") response = client.chat.completions.create( model="openbmb/MiniCPM4.1-8B", messages=[ {"role": "user", "content": "Write an article about Artificial Intelligence."}, ], temperature=0.6, max_tokens=32768, ) print(response.choices[0].message.content) ``` Note: Make sure to update the port number in the client code to match the server port (30002 in the speculative decoding example). ##### Configuration Parameters - `--speculative-algorithm EAGLE3`: Enables EAGLE3 speculative decoding - `--speculative-draft-model-path`: Path to the draft model for speculation - `--speculative-num-steps`: Number of speculative steps (default: 3) - `--speculative-eagle-topk`: Top-k parameter for EAGLE (default: 1) - `--speculative-num-draft-tokens`: Number of draft tokens (default: 32) - `--mem-fraction-static`: Memory fraction for static allocation (default: 0.9) #### Standard Inference (Without Speculative Decoding) For now, you need to install our forked version of SGLang. ```bash git clone -b openbmb https://github.com/OpenBMB/sglang.git cd sglang pip install --upgrade pip pip install -e "python[all]" ``` You can start the inference server by running the following command: ```bash python -m sglang.launch_server --model openbmb/MiniCPM4.1-8B --trust-remote-code --port 30000 --chat-template chatml ``` Then you can use the chat interface by running the following command: ```python import openai client = openai.Client(base_url=f"http://localhost:30000/v1", api_key="None") response = client.chat.completions.create( model="openbmb/MiniCPM4.1-8B", messages=[ {"role": "user", "content": "Write an article about Artificial Intelligence."}, ], temperature=0.6, max_tokens=32768, ) print(response.choices[0].message.content) ``` ### Inference with [vLLM](https://github.com/vllm-project/vllm) #### Speculative Decoding For accelerated inference with speculative decoding using vLLM, follow these steps: ##### 1. Download MiniCPM4.1 Draft Model First, download the MiniCPM4.1 draft model: ```bash cd /your_path git clone https://huggingface.co/openbmb/MiniCPM4.1-8B-Eagle3 ``` ##### 2. Install EAGLE3-Compatible vLLM The EAGLE3 vLLM PR has been submitted. For now, use our repository for installation: ```bash git clone https://github.com/LDLINGLINGLING/vllm.git cd vllm pip install -e . ``` ##### 3. Launch vLLM Server with Speculative Decoding Start the vLLM inference server with speculative decoding enabled. Make sure to update the model path in the speculative-config to point to your downloaded MiniCPM4_1-8B-Eagle3-bf16 folder: ```bash VLLM_USE_V1=1 \ vllm serve openbmb/MiniCPM4.1-8B \ --seed 42 \ --trust-remote-code \ --speculative-config '{ "model": "your/path/MiniCPM4_1-8B-Eagle3-bf16", "num_speculative_tokens": 3, "method": "eagle3", "draft_tensor_parallel_size": 1 }' ``` ##### 4. Client Usage Example The client usage remains the same for both standard and speculative decoding: ```python import openai client = openai.Client(base_url="http://localhost:8000/v1", api_key="EMPTY") response = client.chat.completions.create( model="openbmb/MiniCPM4.1-8B", messages=[ {"role": "user", "content": "Write an article about Artificial Intelligence."}, ], temperature=0.6, max_tokens=32768, extra_body=dict(add_special_tokens=True), # Ensures special tokens are added for chat template ) print(response.choices[0].message.content) ``` ##### vLLM Configuration Parameters - `VLLM_USE_V1=1`: Enables vLLM v1 API - `--speculative-config`: JSON configuration for speculative decoding - `model`: Path to the draft model for speculation - `num_speculative_tokens`: Number of speculative tokens (default: 3) - `method`: Speculative decoding method (eagle3) - `draft_tensor_parallel_size`: Tensor parallel size for draft model (default: 1) - `--seed`: Random seed for reproducibility - `--trust-remote-code`: Allow execution of remote code for custom models #### Standard Inference (Without Speculative Decoding) For now, you need to install the latest version of vLLM. ```bash pip install -U vllm \ --pre \ --extra-index-url https://wheels.vllm.ai/nightly ``` Then you can inference MiniCPM4.1-8B with vLLM: ```python from transformers import AutoTokenizer from vllm import LLM, SamplingParams model_name = "openbmb/MiniCPM4.1-8B" prompt = [{"role": "user", "content": "Write an article about Artificial Intelligence."}] tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True) llm = LLM( model=model_name, trust_remote_code=True, max_num_batched_tokens=65536, dtype="bfloat16", gpu_memory_utilization=0.8, ) sampling_params = SamplingParams(top_p=0.95, temperature=0.6, max_tokens=32768) outputs = llm.generate(prompts=input_text, sampling_params=sampling_params) print(outputs[0].outputs[0].text) ``` Also, you can start the inference server by running the following command: > **Note**: In vLLM's chat API, `add_special_tokens` is `False` by default. This means important special tokens—such as the beginning-of-sequence (BOS) token—will not be added automatically. To ensure the input prompt is correctly formatted for the model, you should explicitly set `extra_body={"add_special_tokens": True}`. ```bash vllm serve openbmb/MiniCPM4.1-8B ``` Then you can use the chat interface by running the following code: ```python import openai client = openai.Client(base_url="http://localhost:8000/v1", api_key="EMPTY") response = client.chat.completions.create( model="openbmb/MiniCPM4.1-8B", messages=[ {"role": "user", "content": "Write an article about Artificial Intelligence."}, ], temperature=0.6, max_tokens=32768, extra_body=dict(add_special_tokens=True), # Ensures special tokens are added for chat template ) print(response.choices[0].message.content) ``` ## Evaluation Results On two typical end-side chips, Jetson AGX Orin and RTX 4090, MiniCPM4 demonstrates significantly faster processing speed compared to similar-size models in long text processing tasks. As text length increases, MiniCPM4's efficiency advantage becomes more pronounced. On the Jetson AGX Orin platform, compared to Qwen3-8B, MiniCPM4 achieves approximately 7x decoding speed improvement. ![benchmark](https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm4/efficiency.png?raw=true) MiniCPM4.1 achieves 3x decoding speed improvement in reasoning. ![benchmark](https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm4/minicpm4.1_speed.png?raw=true) #### Comprehensive Evaluation MiniCPM4.1 launches end-side versions with 8B parameter scale, both achieving best-in-class performance in their respective categories. ![benchmark](https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm4/benchmark4.1.png?raw=true) #### Long Text Evaluation MiniCPM4 is pre-trained on 32K long texts and achieves length extension through YaRN technology. In the 128K long text needle-in-a-haystack task, MiniCPM4 demonstrates outstanding performance. ![long-niah](https://github.com/OpenBMB/MiniCPM/blob/main/assets/minicpm4/128k-niah.png?raw=true) ## Statement - As a language model, MiniCPM generates content by learning from a vast amount of text. - However, it does not possess the ability to comprehend or express personal opinions or value judgments. - Any content generated by MiniCPM does not represent the viewpoints or positions of the model developers. - Therefore, when using content generated by MiniCPM, users should take full responsibility for evaluating and verifying it on their own. ## LICENSE - This repository and MiniCPM models are released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License. ## Citation - Please cite our [paper](https://arxiv.org/abs/2506.07900) if you find our work valuable. ```bibtex @article{minicpm4, title={{MiniCPM4}: Ultra-Efficient LLMs on End Devices}, author={MiniCPM Team}, year={2025} } ```