|  | import sys | 
					
						
						|  | import argparse | 
					
						
						|  | import copy | 
					
						
						|  | import datetime | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import cv2 as cv | 
					
						
						|  |  | 
					
						
						|  | from facial_fer_model import FacialExpressionRecog | 
					
						
						|  |  | 
					
						
						|  | sys.path.append('../face_detection_yunet') | 
					
						
						|  | from yunet import YuNet | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert cv.__version__ >= "4.9.0", \ | 
					
						
						|  | "Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | backend_target_pairs = [ | 
					
						
						|  | [cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], | 
					
						
						|  | [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA], | 
					
						
						|  | [cv.dnn.DNN_BACKEND_CUDA,   cv.dnn.DNN_TARGET_CUDA_FP16], | 
					
						
						|  | [cv.dnn.DNN_BACKEND_TIMVX,  cv.dnn.DNN_TARGET_NPU], | 
					
						
						|  | [cv.dnn.DNN_BACKEND_CANN,   cv.dnn.DNN_TARGET_NPU] | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | parser = argparse.ArgumentParser(description='Facial Expression Recognition') | 
					
						
						|  | parser.add_argument('--input', '-i', type=str, | 
					
						
						|  | help='Path to the input image. Omit for using default camera.') | 
					
						
						|  | parser.add_argument('--model', '-m', type=str, default='./facial_expression_recognition_mobilefacenet_2022july.onnx', | 
					
						
						|  | help='Path to the facial expression recognition model.') | 
					
						
						|  | parser.add_argument('--backend_target', '-bt', type=int, default=0, | 
					
						
						|  | help='''Choose one of the backend-target pair to run this demo: | 
					
						
						|  | {:d}: (default) OpenCV implementation + CPU, | 
					
						
						|  | {:d}: CUDA + GPU (CUDA), | 
					
						
						|  | {:d}: CUDA + GPU (CUDA FP16), | 
					
						
						|  | {:d}: TIM-VX + NPU, | 
					
						
						|  | {:d}: CANN + NPU | 
					
						
						|  | '''.format(*[x for x in range(len(backend_target_pairs))])) | 
					
						
						|  | parser.add_argument('--save', '-s', action='store_true', | 
					
						
						|  | help='Specify to save results. This flag is invalid when using camera.') | 
					
						
						|  | parser.add_argument('--vis', '-v', action='store_true', | 
					
						
						|  | help='Specify to open a window for result visualization. This flag is invalid when using camera.') | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  |  | 
					
						
						|  | def visualize(image, det_res, fer_res, box_color=(0, 255, 0), text_color=(0, 0, 255)): | 
					
						
						|  |  | 
					
						
						|  | print('%s %3d faces detected.' % (datetime.datetime.now(), len(det_res))) | 
					
						
						|  |  | 
					
						
						|  | output = image.copy() | 
					
						
						|  | landmark_color = [ | 
					
						
						|  | (255,  0,   0), | 
					
						
						|  | (0,    0, 255), | 
					
						
						|  | (0,  255,   0), | 
					
						
						|  | (255,  0, 255), | 
					
						
						|  | (0,  255, 255) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | for ind, (det, fer_type) in enumerate(zip(det_res, fer_res)): | 
					
						
						|  | bbox = det[0:4].astype(np.int32) | 
					
						
						|  | fer_type = FacialExpressionRecog.getDesc(fer_type) | 
					
						
						|  | print("Face %2d: %d %d %d %d %s." % (ind, bbox[0], bbox[1], bbox[0]+bbox[2], bbox[1]+bbox[3], fer_type)) | 
					
						
						|  | cv.rectangle(output, (bbox[0], bbox[1]), (bbox[0]+bbox[2], bbox[1]+bbox[3]), box_color, 2) | 
					
						
						|  | cv.putText(output, fer_type, (bbox[0], bbox[1]+12), cv.FONT_HERSHEY_DUPLEX, 0.5, text_color) | 
					
						
						|  | landmarks = det[4:14].astype(np.int32).reshape((5, 2)) | 
					
						
						|  | for idx, landmark in enumerate(landmarks): | 
					
						
						|  | cv.circle(output, landmark, 2, landmark_color[idx], 2) | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def process(detect_model, fer_model, frame): | 
					
						
						|  | h, w, _ = frame.shape | 
					
						
						|  | detect_model.setInputSize([w, h]) | 
					
						
						|  | dets = detect_model.infer(frame) | 
					
						
						|  |  | 
					
						
						|  | if dets is None: | 
					
						
						|  | return False, None, None | 
					
						
						|  |  | 
					
						
						|  | fer_res = np.zeros(0, dtype=np.int8) | 
					
						
						|  | for face_points in dets: | 
					
						
						|  | fer_res = np.concatenate((fer_res, fer_model.infer(frame, face_points[:-1])), axis=0) | 
					
						
						|  | return True, dets, fer_res | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == '__main__': | 
					
						
						|  | backend_id = backend_target_pairs[args.backend_target][0] | 
					
						
						|  | target_id = backend_target_pairs[args.backend_target][1] | 
					
						
						|  |  | 
					
						
						|  | detect_model = YuNet(modelPath='../face_detection_yunet/face_detection_yunet_2023mar.onnx') | 
					
						
						|  |  | 
					
						
						|  | fer_model = FacialExpressionRecog(modelPath=args.model, | 
					
						
						|  | backendId=backend_id, | 
					
						
						|  | targetId=target_id) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if args.input is not None: | 
					
						
						|  | image = cv.imread(args.input) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | status, dets, fer_res = process(detect_model, fer_model, image) | 
					
						
						|  |  | 
					
						
						|  | if status: | 
					
						
						|  |  | 
					
						
						|  | image = visualize(image, dets, fer_res) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if args.save: | 
					
						
						|  | cv.imwrite('result.jpg', image) | 
					
						
						|  | print('Results saved to result.jpg\n') | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if args.vis: | 
					
						
						|  | cv.namedWindow(args.input, cv.WINDOW_AUTOSIZE) | 
					
						
						|  | cv.imshow(args.input, image) | 
					
						
						|  | cv.waitKey(0) | 
					
						
						|  | else: | 
					
						
						|  | deviceId = 0 | 
					
						
						|  | cap = cv.VideoCapture(deviceId) | 
					
						
						|  |  | 
					
						
						|  | while cv.waitKey(1) < 0: | 
					
						
						|  | hasFrame, frame = cap.read() | 
					
						
						|  | if not hasFrame: | 
					
						
						|  | print('No frames grabbed!') | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | status, dets, fer_res = process(detect_model, fer_model, frame) | 
					
						
						|  |  | 
					
						
						|  | if status: | 
					
						
						|  |  | 
					
						
						|  | frame = visualize(frame, dets, fer_res) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cv.imshow('FER Demo', frame) | 
					
						
						|  |  |