Limit combinations of backends and targets in demos and benchmark (#145)
Browse files* limit backend and target combination in demos and benchmark
* simpler version checking
- demo.py +26 -30
- mobilenet.py +3 -5
demo.py
CHANGED
@@ -5,43 +5,39 @@ import cv2 as cv
|
|
5 |
|
6 |
from mobilenet import MobileNet
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
help_msg_targets = "Chose one of the target computation devices: {:d}: CPU (default); {:d}: CUDA; {:d}: CUDA fp16"
|
20 |
-
try:
|
21 |
-
backends += [cv.dnn.DNN_BACKEND_TIMVX]
|
22 |
-
targets += [cv.dnn.DNN_TARGET_NPU]
|
23 |
-
help_msg_backends += "; {:d}: TIMVX"
|
24 |
-
help_msg_targets += "; {:d}: NPU"
|
25 |
-
except:
|
26 |
-
print('This version of OpenCV does not support TIM-VX and NPU. Visit https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU for more information.')
|
27 |
-
|
28 |
-
all_mobilenets = [
|
29 |
-
'image_classification_mobilenetv1_2022apr.onnx',
|
30 |
-
'image_classification_mobilenetv2_2022apr.onnx',
|
31 |
-
'image_classification_mobilenetv1_2022apr-int8-quantized.onnx',
|
32 |
-
'image_classification_mobilenetv2_2022apr-int8-quantized.onnx'
|
33 |
]
|
34 |
|
35 |
parser = argparse.ArgumentParser(description='Demo for MobileNet V1 & V2.')
|
36 |
-
parser.add_argument('--input', '-i', type=str,
|
37 |
-
|
38 |
-
parser.add_argument('--
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
args = parser.parse_args()
|
41 |
|
42 |
if __name__ == '__main__':
|
|
|
|
|
43 |
# Instantiate MobileNet
|
44 |
-
model = MobileNet(modelPath=args.model, backendId=
|
45 |
|
46 |
# Read image and get a 224x224 crop from a 256x256 resized
|
47 |
image = cv.imread(args.input)
|
|
|
5 |
|
6 |
from mobilenet import MobileNet
|
7 |
|
8 |
+
# Check OpenCV version
|
9 |
+
assert cv.__version__ >= "4.7.0", \
|
10 |
+
"Please install latest opencv-python to try this demo: python3 -m pip install --upgrade opencv-python"
|
11 |
+
|
12 |
+
# Valid combinations of backends and targets
|
13 |
+
backend_target_pairs = [
|
14 |
+
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
15 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
|
16 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
|
17 |
+
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
|
18 |
+
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
]
|
20 |
|
21 |
parser = argparse.ArgumentParser(description='Demo for MobileNet V1 & V2.')
|
22 |
+
parser.add_argument('--input', '-i', type=str,
|
23 |
+
help='Usage: Set input path to a certain image, omit if using camera.')
|
24 |
+
parser.add_argument('--model', '-m', type=str, default='image_classification_mobilenetv1_2022apr.onnx',
|
25 |
+
help='Usage: Set model type, defaults to image_classification_mobilenetv1_2022apr.onnx (v1).')
|
26 |
+
parser.add_argument('--backend_target', '-bt', type=int, default=0,
|
27 |
+
help='''Choose one of the backend-target pair to run this demo:
|
28 |
+
{:d}: (default) OpenCV implementation + CPU,
|
29 |
+
{:d}: CUDA + GPU (CUDA),
|
30 |
+
{:d}: CUDA + GPU (CUDA FP16),
|
31 |
+
{:d}: TIM-VX + NPU,
|
32 |
+
{:d}: CANN + NPU
|
33 |
+
'''.format(*[x for x in range(len(backend_target_pairs))]))
|
34 |
args = parser.parse_args()
|
35 |
|
36 |
if __name__ == '__main__':
|
37 |
+
backend_id = backend_target_pairs[args.backend_target][0]
|
38 |
+
target_id = backend_target_pairs[args.backend_target][1]
|
39 |
# Instantiate MobileNet
|
40 |
+
model = MobileNet(modelPath=args.model, backendId=backend_id, targetId=target_id)
|
41 |
|
42 |
# Read image and get a 224x224 crop from a 256x256 resized
|
43 |
image = cv.imread(args.input)
|
mobilenet.py
CHANGED
@@ -33,12 +33,10 @@ class MobileNet:
|
|
33 |
def name(self):
|
34 |
return self.__class__.__name__
|
35 |
|
36 |
-
def
|
37 |
-
self.
|
|
|
38 |
self.model.setPreferableBackend(self.backend_id)
|
39 |
-
|
40 |
-
def setTarget(self, targetId):
|
41 |
-
self.target_id = targetId
|
42 |
self.model.setPreferableTarget(self.target_id)
|
43 |
|
44 |
def _preprocess(self, image):
|
|
|
33 |
def name(self):
|
34 |
return self.__class__.__name__
|
35 |
|
36 |
+
def setBackendAndTarget(self, backendId, targetId):
|
37 |
+
self._backendId = backendId
|
38 |
+
self._targetId = targetId
|
39 |
self.model.setPreferableBackend(self.backend_id)
|
|
|
|
|
|
|
40 |
self.model.setPreferableTarget(self.target_id)
|
41 |
|
42 |
def _preprocess(self, image):
|