Yuantao Feng
Update to OpenCV APIs (YuNet -> FaceDetectorYN, SFace -> FaceRecognizerSF) (#6)
3af1dea
| # This file is part of OpenCV Zoo project. | |
| # It is subject to the license terms in the LICENSE file found in the same directory. | |
| # | |
| # Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved. | |
| # Third party copyrights are property of their respective owners. | |
| import sys | |
| import argparse | |
| import numpy as np | |
| import cv2 as cv | |
| from sface import SFace | |
| sys.path.append('../face_detection_yunet') | |
| from yunet import YuNet | |
| def str2bool(v): | |
| if v.lower() in ['on', 'yes', 'true', 'y', 't']: | |
| return True | |
| elif v.lower() in ['off', 'no', 'false', 'n', 'f']: | |
| return False | |
| else: | |
| raise NotImplementedError | |
| parser = argparse.ArgumentParser( | |
| description="SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition (https://ieeexplore.ieee.org/document/9318547)") | |
| parser.add_argument('--input1', '-i1', type=str, help='Path to the input image 1.') | |
| parser.add_argument('--input2', '-i2', type=str, help='Path to the input image 2.') | |
| parser.add_argument('--model', '-m', type=str, default='face_recognition_sface.onnx', help='Path to the model.') | |
| parser.add_argument('--dis_type', type=int, choices=[0, 1], default=0, help='Distance type. \'0\': cosine, \'1\': norm_l1.') | |
| parser.add_argument('--save', '-s', type=str, default=False, help='Set true to save results. This flag is invalid when using camera.') | |
| parser.add_argument('--vis', '-v', type=str2bool, default=True, help='Set true to open a window for result visualization. This flag is invalid when using camera.') | |
| args = parser.parse_args() | |
| if __name__ == '__main__': | |
| # Instantiate SFace for face recognition | |
| recognizer = SFace(modelPath=args.model, disType=args.dis_type) | |
| # Instantiate YuNet for face detection | |
| detector = YuNet(modelPath='../face_detection_yunet/face_detection_yunet.onnx', | |
| inputSize=[320, 320], | |
| confThreshold=0.9, | |
| nmsThreshold=0.3, | |
| topK=5000) | |
| img1 = cv.imread(args.input1) | |
| img2 = cv.imread(args.input2) | |
| # Detect faces | |
| detector.setInputSize([img1.shape[1], img1.shape[0]]) | |
| face1 = detector.infer(img1) | |
| assert face1.shape[0] > 0, 'Cannot find a face in {}'.format(args.input1) | |
| detector.setInputSize([img2.shape[1], img2.shape[0]]) | |
| face2 = detector.infer(img2) | |
| assert face2.shape[0] > 0, 'Cannot find a face in {}'.format(args.input2) | |
| # Match | |
| result = recognizer.match(img1, face1[0][:-1], img2, face2[0][:-1]) | |
| print('Result: {}.'.format('same identity' if result else 'different identities')) |