| layer { | |
| name: "data" | |
| type: "Input" | |
| top: "data" | |
| input_param { | |
| shape { | |
| dim: 1 | |
| dim: 1 | |
| dim: 224 | |
| dim: 224 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv0" | |
| type: "Convolution" | |
| bottom: "data" | |
| top: "conv0" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "conv0/lrelu" | |
| type: "ReLU" | |
| bottom: "conv0" | |
| top: "conv0" | |
| relu_param { | |
| negative_slope: 0.05000000074505806 | |
| } | |
| } | |
| layer { | |
| name: "db1/reduce" | |
| type: "Convolution" | |
| bottom: "conv0" | |
| top: "db1/reduce" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| convolution_param { | |
| num_output: 8 | |
| bias_term: true | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "db1/reduce/lrelu" | |
| type: "ReLU" | |
| bottom: "db1/reduce" | |
| top: "db1/reduce" | |
| relu_param { | |
| negative_slope: 0.05000000074505806 | |
| } | |
| } | |
| layer { | |
| name: "db1/3x3" | |
| type: "Convolution" | |
| bottom: "db1/reduce" | |
| top: "db1/3x3" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| convolution_param { | |
| num_output: 8 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 8 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "db1/3x3/lrelu" | |
| type: "ReLU" | |
| bottom: "db1/3x3" | |
| top: "db1/3x3" | |
| relu_param { | |
| negative_slope: 0.05000000074505806 | |
| } | |
| } | |
| layer { | |
| name: "db1/1x1" | |
| type: "Convolution" | |
| bottom: "db1/3x3" | |
| top: "db1/1x1" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: true | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "db1/1x1/lrelu" | |
| type: "ReLU" | |
| bottom: "db1/1x1" | |
| top: "db1/1x1" | |
| relu_param { | |
| negative_slope: 0.05000000074505806 | |
| } | |
| } | |
| layer { | |
| name: "db1/concat" | |
| type: "Concat" | |
| bottom: "conv0" | |
| bottom: "db1/1x1" | |
| top: "db1/concat" | |
| concat_param { | |
| axis: 1 | |
| } | |
| } | |
| layer { | |
| name: "db2/reduce" | |
| type: "Convolution" | |
| bottom: "db1/concat" | |
| top: "db2/reduce" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| convolution_param { | |
| num_output: 8 | |
| bias_term: true | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "db2/reduce/lrelu" | |
| type: "ReLU" | |
| bottom: "db2/reduce" | |
| top: "db2/reduce" | |
| relu_param { | |
| negative_slope: 0.05000000074505806 | |
| } | |
| } | |
| layer { | |
| name: "db2/3x3" | |
| type: "Convolution" | |
| bottom: "db2/reduce" | |
| top: "db2/3x3" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| convolution_param { | |
| num_output: 8 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 8 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "db2/3x3/lrelu" | |
| type: "ReLU" | |
| bottom: "db2/3x3" | |
| top: "db2/3x3" | |
| relu_param { | |
| negative_slope: 0.05000000074505806 | |
| } | |
| } | |
| layer { | |
| name: "db2/1x1" | |
| type: "Convolution" | |
| bottom: "db2/3x3" | |
| top: "db2/1x1" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: true | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "db2/1x1/lrelu" | |
| type: "ReLU" | |
| bottom: "db2/1x1" | |
| top: "db2/1x1" | |
| relu_param { | |
| negative_slope: 0.05000000074505806 | |
| } | |
| } | |
| layer { | |
| name: "db2/concat" | |
| type: "Concat" | |
| bottom: "db1/concat" | |
| bottom: "db2/1x1" | |
| top: "db2/concat" | |
| concat_param { | |
| axis: 1 | |
| } | |
| } | |
| layer { | |
| name: "upsample/reduce" | |
| type: "Convolution" | |
| bottom: "db2/concat" | |
| top: "upsample/reduce" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: true | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "upsample/reduce/lrelu" | |
| type: "ReLU" | |
| bottom: "upsample/reduce" | |
| top: "upsample/reduce" | |
| relu_param { | |
| negative_slope: 0.05000000074505806 | |
| } | |
| } | |
| layer { | |
| name: "upsample/deconv" | |
| type: "Deconvolution" | |
| bottom: "upsample/reduce" | |
| top: "upsample/deconv" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| convolution_param { | |
| num_output: 32 | |
| bias_term: true | |
| pad: 1 | |
| kernel_size: 3 | |
| group: 32 | |
| stride: 2 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "upsample/lrelu" | |
| type: "ReLU" | |
| bottom: "upsample/deconv" | |
| top: "upsample/deconv" | |
| relu_param { | |
| negative_slope: 0.05000000074505806 | |
| } | |
| } | |
| layer { | |
| name: "upsample/rec" | |
| type: "Convolution" | |
| bottom: "upsample/deconv" | |
| top: "upsample/rec" | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 1.0 | |
| } | |
| param { | |
| lr_mult: 1.0 | |
| decay_mult: 0.0 | |
| } | |
| convolution_param { | |
| num_output: 1 | |
| bias_term: true | |
| pad: 0 | |
| kernel_size: 1 | |
| group: 1 | |
| stride: 1 | |
| weight_filler { | |
| type: "msra" | |
| } | |
| } | |
| } | |
| layer { | |
| name: "nearest" | |
| type: "Deconvolution" | |
| bottom: "data" | |
| top: "nearest" | |
| param { | |
| lr_mult: 0.0 | |
| decay_mult: 0.0 | |
| } | |
| convolution_param { | |
| num_output: 1 | |
| bias_term: false | |
| pad: 0 | |
| kernel_size: 2 | |
| group: 1 | |
| stride: 2 | |
| weight_filler { | |
| type: "constant" | |
| value: 1.0 | |
| } | |
| } | |
| } | |
| layer { | |
| name: "Crop1" | |
| type: "Crop" | |
| bottom: "nearest" | |
| bottom: "upsample/rec" | |
| top: "Crop1" | |
| } | |
| layer { | |
| name: "fc" | |
| type: "Eltwise" | |
| bottom: "Crop1" | |
| bottom: "upsample/rec" | |
| top: "fc" | |
| eltwise_param { | |
| operation: SUM | |
| } | |
| } | |