Wanli
commited on
Commit
·
c920270
1
Parent(s):
b7e21c2
update accuracy evaluation scripts (#184)
Browse files* update accuracy evaluation scripts
* remove labels of image classification
- tools/eval/README.md +2 -2
- tools/eval/eval.py +15 -11
tools/eval/README.md
CHANGED
|
@@ -5,7 +5,7 @@ Make sure you have the following packages installed:
|
|
| 5 |
```shell
|
| 6 |
pip install tqdm
|
| 7 |
pip install scikit-learn
|
| 8 |
-
pip install scipy
|
| 9 |
```
|
| 10 |
|
| 11 |
Generally speaking, evaluation can be done with the following command:
|
|
@@ -27,7 +27,7 @@ Supported datasets:
|
|
| 27 |
|
| 28 |
### Prepare data
|
| 29 |
|
| 30 |
-
Please visit https://image-net.org/ to download the ImageNet dataset and [the labels from caffe](http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz). Organize files as follow:
|
| 31 |
|
| 32 |
```shell
|
| 33 |
$ tree -L 2 /path/to/imagenet
|
|
|
|
| 5 |
```shell
|
| 6 |
pip install tqdm
|
| 7 |
pip install scikit-learn
|
| 8 |
+
pip install scipy==1.8.1
|
| 9 |
```
|
| 10 |
|
| 11 |
Generally speaking, evaluation can be done with the following command:
|
|
|
|
| 27 |
|
| 28 |
### Prepare data
|
| 29 |
|
| 30 |
+
Please visit https://image-net.org/ to download the ImageNet dataset (only need images in `ILSVRC/Data/CLS-LOC/val`) and [the labels from caffe](http://dl.caffe.berkeleyvision.org/caffe_ilsvrc12.tar.gz). Organize files as follow:
|
| 31 |
|
| 32 |
```shell
|
| 33 |
$ tree -L 2 /path/to/imagenet
|
tools/eval/eval.py
CHANGED
|
@@ -22,24 +22,24 @@ args = parser.parse_args()
|
|
| 22 |
|
| 23 |
models = dict(
|
| 24 |
mobilenetv1=dict(
|
| 25 |
-
name="
|
| 26 |
topic="image_classification",
|
| 27 |
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx"),
|
| 28 |
topK=5),
|
| 29 |
mobilenetv1_q=dict(
|
| 30 |
-
name="
|
| 31 |
topic="image_classification",
|
| 32 |
-
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/
|
| 33 |
topK=5),
|
| 34 |
mobilenetv2=dict(
|
| 35 |
-
name="
|
| 36 |
topic="image_classification",
|
| 37 |
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx"),
|
| 38 |
topK=5),
|
| 39 |
mobilenetv2_q=dict(
|
| 40 |
-
name="
|
| 41 |
topic="image_classification",
|
| 42 |
-
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/
|
| 43 |
topK=5),
|
| 44 |
ppresnet=dict(
|
| 45 |
name="PPResNet",
|
|
@@ -49,7 +49,7 @@ models = dict(
|
|
| 49 |
ppresnet_q=dict(
|
| 50 |
name="PPResNet",
|
| 51 |
topic="image_classification",
|
| 52 |
-
modelPath=os.path.join(root_dir, "models/image_classification_ppresnet/
|
| 53 |
topK=5),
|
| 54 |
yunet=dict(
|
| 55 |
name="YuNet",
|
|
@@ -72,19 +72,23 @@ models = dict(
|
|
| 72 |
sface_q=dict(
|
| 73 |
name="SFace",
|
| 74 |
topic="face_recognition",
|
| 75 |
-
modelPath=os.path.join(root_dir, "models/face_recognition_sface/
|
| 76 |
-
|
| 77 |
name="CRNN",
|
| 78 |
topic="text_recognition",
|
| 79 |
modelPath=os.path.join(root_dir, "models/text_recognition_crnn/text_recognition_CRNN_EN_2021sep.onnx")),
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
pphumanseg=dict(
|
| 81 |
name="PPHumanSeg",
|
| 82 |
topic="human_segmentation",
|
| 83 |
-
modelPath=os.path.join(root_dir, "models/human_segmentation_pphumanseg/
|
| 84 |
pphumanseg_q=dict(
|
| 85 |
name="PPHumanSeg",
|
| 86 |
topic="human_segmentation",
|
| 87 |
-
modelPath=os.path.join(root_dir, "models/human_segmentation_pphumanseg/
|
| 88 |
)
|
| 89 |
|
| 90 |
datasets = dict(
|
|
|
|
| 22 |
|
| 23 |
models = dict(
|
| 24 |
mobilenetv1=dict(
|
| 25 |
+
name="MobileNet",
|
| 26 |
topic="image_classification",
|
| 27 |
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr.onnx"),
|
| 28 |
topK=5),
|
| 29 |
mobilenetv1_q=dict(
|
| 30 |
+
name="MobileNet",
|
| 31 |
topic="image_classification",
|
| 32 |
+
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv1_2022apr_int8.onnx"),
|
| 33 |
topK=5),
|
| 34 |
mobilenetv2=dict(
|
| 35 |
+
name="MobileNet",
|
| 36 |
topic="image_classification",
|
| 37 |
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr.onnx"),
|
| 38 |
topK=5),
|
| 39 |
mobilenetv2_q=dict(
|
| 40 |
+
name="MobileNet",
|
| 41 |
topic="image_classification",
|
| 42 |
+
modelPath=os.path.join(root_dir, "models/image_classification_mobilenet/image_classification_mobilenetv2_2022apr_int8.onnx"),
|
| 43 |
topK=5),
|
| 44 |
ppresnet=dict(
|
| 45 |
name="PPResNet",
|
|
|
|
| 49 |
ppresnet_q=dict(
|
| 50 |
name="PPResNet",
|
| 51 |
topic="image_classification",
|
| 52 |
+
modelPath=os.path.join(root_dir, "models/image_classification_ppresnet/image_classification_ppresnet50_2022jan_int8.onnx"),
|
| 53 |
topK=5),
|
| 54 |
yunet=dict(
|
| 55 |
name="YuNet",
|
|
|
|
| 72 |
sface_q=dict(
|
| 73 |
name="SFace",
|
| 74 |
topic="face_recognition",
|
| 75 |
+
modelPath=os.path.join(root_dir, "models/face_recognition_sface/face_recognition_sface_2021dec_int8.onnx")),
|
| 76 |
+
crnn_en=dict(
|
| 77 |
name="CRNN",
|
| 78 |
topic="text_recognition",
|
| 79 |
modelPath=os.path.join(root_dir, "models/text_recognition_crnn/text_recognition_CRNN_EN_2021sep.onnx")),
|
| 80 |
+
crnn_en_q=dict(
|
| 81 |
+
name="CRNN",
|
| 82 |
+
topic="text_recognition",
|
| 83 |
+
modelPath=os.path.join(root_dir, "models/text_recognition_crnn/text_recognition_CRNN_EN_2022oct_int8.onnx")),
|
| 84 |
pphumanseg=dict(
|
| 85 |
name="PPHumanSeg",
|
| 86 |
topic="human_segmentation",
|
| 87 |
+
modelPath=os.path.join(root_dir, "models/human_segmentation_pphumanseg/human_segmentation_pphumanseg_2023mar.onnx")),
|
| 88 |
pphumanseg_q=dict(
|
| 89 |
name="PPHumanSeg",
|
| 90 |
topic="human_segmentation",
|
| 91 |
+
modelPath=os.path.join(root_dir, "models/human_segmentation_pphumanseg/human_segmentation_pphumanseg_2023mar_int8.onnx")),
|
| 92 |
)
|
| 93 |
|
| 94 |
datasets = dict(
|