# NAFNet NAFNet is a lightweight image deblurring model that eliminates nonlinear activations to achieve state-of-the-art performance with minimal computational cost. Notes: - Model source: [.pth](https://drive.google.com/file/d/14D4V4raNYIOhETfcuuLI3bGLB-OYIv6X/view). - ONNX Model link: [ONNX](https://drive.google.com/uc?export=dowload&id=1ZLRhkpCekNruJZggVpBgSoCx3k7bJ-5v) ## Requirements Install latest OpenCV >=5.0.0 and CMake >= 3.22.2 to get started with. ## Demo ### Python Run the following command to try the demo: ```shell # deblur the default input image python demo.py # deblur the user input image python demo.py --input /path/to/image # get help regarding various parameters python demo.py --help ``` ### C++ ```shell # A typical and default installation path of OpenCV is /usr/local cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation . cmake --build build # deblur the default input image ./build/demo # deblur the user input image ./build/demo --input=/path/to/image # get help messages ./build/demo -h ``` ### Example outputs ![licenseplate_motion](./example_outputs/licenseplate_motion_output.jpg) ## License All files in this directory are licensed under [MIT License](./LICENSE). ## Reference - https://github.com/megvii-research/NAFNet