# DexiNed DexiNed is a Convolutional Neural Network (CNN) architecture for edge detection. Notes: - Model source: [ONNX](https://drive.google.com/file/d/1u_qXqXqaIP_SqdGaq4CbZyjzkZb02XTs/view). - Model source: [.pth](https://drive.google.com/file/d/1V56vGTsu7GYiQouCIKvTWl5UKCZ6yCNu/view). - This ONNX model has fixed input shape, but OpenCV DNN infers on the exact shape of input image. See https://github.com/opencv/opencv_zoo/issues/44 for more information. ## Requirements Install latest OpenCV >=5.0.0 and CMake >= 3.22.2 to get started with. ## Demo ### Python Run the following command to try the demo: ```shell # detect on camera input python demo.py # detect on an image python demo.py --input /path/to/image # get help regarding various parameters python demo.py --help ``` ### C++ ```shell # A typical and default installation path of OpenCV is /usr/local cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation . cmake --build build # detect on camera input ./build/demo # detect on an image ./build/demo --input=/path/to/image # get help messages ./build/demo -h ``` ### Example outputs ![chicky](./example_outputs/chicky_output.jpg) ## License All files in this directory are licensed under [MIT License](./LICENSE). ## Reference - https://github.com/xavysp/DexiNed