new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 17

CVEfixes: Automated Collection of Vulnerabilities and Their Fixes from Open-Source Software

Data-driven research on the automated discovery and repair of security vulnerabilities in source code requires comprehensive datasets of real-life vulnerable code and their fixes. To assist in such research, we propose a method to automatically collect and curate a comprehensive vulnerability dataset from Common Vulnerabilities and Exposures (CVE) records in the public National Vulnerability Database (NVD). We implement our approach in a fully automated dataset collection tool and share an initial release of the resulting vulnerability dataset named CVEfixes. The CVEfixes collection tool automatically fetches all available CVE records from the NVD, gathers the vulnerable code and corresponding fixes from associated open-source repositories, and organizes the collected information in a relational database. Moreover, the dataset is enriched with meta-data such as programming language, and detailed code and security metrics at five levels of abstraction. The collection can easily be repeated to keep up-to-date with newly discovered or patched vulnerabilities. The initial release of CVEfixes spans all published CVEs up to 9 June 2021, covering 5365 CVE records for 1754 open-source projects that were addressed in a total of 5495 vulnerability fixing commits. CVEfixes supports various types of data-driven software security research, such as vulnerability prediction, vulnerability classification, vulnerability severity prediction, analysis of vulnerability-related code changes, and automated vulnerability repair.

A Repository-Level Dataset For Detecting, Classifying and Repairing Software Vulnerabilities

Open-Source Software (OSS) vulnerabilities bring great challenges to the software security and pose potential risks to our society. Enormous efforts have been devoted into automated vulnerability detection, among which deep learning (DL)-based approaches have proven to be the most effective. However, the current labeled data present the following limitations: (1) Tangled Patches: Developers may submit code changes unrelated to vulnerability fixes within patches, leading to tangled patches. (2) Lacking Inter-procedural Vulnerabilities: The existing vulnerability datasets typically contain function-level and file-level vulnerabilities, ignoring the relations between functions, thus rendering the approaches unable to detect the inter-procedural vulnerabilities. (3) Outdated Patches: The existing datasets usually contain outdated patches, which may bias the model during training. To address the above limitations, in this paper, we propose an automated data collection framework and construct the first repository-level high-quality vulnerability dataset named ReposVul. The proposed framework mainly contains three modules: (1) A vulnerability untangling module, aiming at distinguishing vulnerability-fixing related code changes from tangled patches, in which the Large Language Models (LLMs) and static analysis tools are jointly employed. (2) A multi-granularity dependency extraction module, aiming at capturing the inter-procedural call relationships of vulnerabilities, in which we construct multiple-granularity information for each vulnerability patch, including repository-level, file-level, function-level, and line-level. (3) A trace-based filtering module, aiming at filtering the outdated patches, which leverages the file path trace-based filter and commit time trace-based filter to construct an up-to-date dataset.

An Exploratory Study on Fine-Tuning Large Language Models for Secure Code Generation

AI-powered coding assistants such as GitHub Copilot and OpenAI ChatGPT have achieved notable success in automating code generation. However, these tools rely on pre-trained Large Language Models (LLMs) that are typically trained on human-written code sourced from open-source project hosting sites like GitHub, which often contains inherent security vulnerabilities. These vulnerabilities may then be mirrored in the code generated by these LLMs, a critical risk revealed and highlighted by recent empirical studies. In this work, we present an exploratory study on whether fine-tuning pre-trained LLMs on datasets of vulnerability-fixing commits can promote secure code generation. We explored two parameter-efficient fine-tuning techniques (LoRa and IA3) on two pre-trained LLMs for code generation. We crawled a fine-tuning dataset (14,622 C and C++ files) for secure code generation by collecting code fixes of confirmed vulnerabilities from open-source repositories. Our evaluation dataset comprises 52 vulnerability scenarios designed to cover the top most dangerous C and C++ Common Weakness Enumerations (CWEs). Each scenario is a prompt that may induce LLMs to generate vulnerable code. Our exploration reveals that fine-tuning LLMs can improve secure code generation by 6.4% in C language and 5.4% in C++ language. We further experimented with fine-tuning LLMs using different versions of the collected secure code dataset (block, function, and line). We found that fine-tuning with function-level and block-level datasets achieves the best secure code generation performance, compared to the alternatives (file-level and line-level).

Vulnerability Detection with Code Language Models: How Far Are We?

In the context of the rising interest in code language models (code LMs) and vulnerability detection, we study the effectiveness of code LMs for detecting vulnerabilities. Our analysis reveals significant shortcomings in existing vulnerability datasets, including poor data quality, low label accuracy, and high duplication rates, leading to unreliable model performance in realistic vulnerability detection scenarios. Additionally, the evaluation methods used with these datasets are not representative of real-world vulnerability detection. To address these challenges, we introduce PrimeVul, a new dataset for training and evaluating code LMs for vulnerability detection. PrimeVul incorporates a novel set of data labeling techniques that achieve comparable label accuracy to human-verified benchmarks while significantly expanding the dataset. It also implements a rigorous data de-duplication and chronological data splitting strategy to mitigate data leakage issues, alongside introducing more realistic evaluation metrics and settings. This comprehensive approach aims to provide a more accurate assessment of code LMs' performance in real-world conditions. Evaluating code LMs on PrimeVul reveals that existing benchmarks significantly overestimate the performance of these models. For instance, a state-of-the-art 7B model scored 68.26% F1 on BigVul but only 3.09% F1 on PrimeVul. Attempts to improve performance through advanced training techniques and larger models like GPT-3.5 and GPT-4 were unsuccessful, with results akin to random guessing in the most stringent settings. These findings underscore the considerable gap between current capabilities and the practical requirements for deploying code LMs in security roles, highlighting the need for more innovative research in this domain.

Reasoning with LLMs for Zero-Shot Vulnerability Detection

Automating software vulnerability detection (SVD) remains a critical challenge in an era of increasingly complex and interdependent software systems. Despite significant advances in Large Language Models (LLMs) for code analysis, prevailing evaluation methodologies often lack the context-aware robustness necessary to capture real-world intricacies and cross-component interactions. To address these limitations, we present VulnSage, a comprehensive evaluation framework and a dataset curated from diverse, large-scale open-source system software projects developed in C/C++. Unlike prior datasets, it leverages a heuristic noise pre-filtering approach combined with LLM-based reasoning to ensure a representative and minimally noisy spectrum of vulnerabilities. The framework supports multi-granular analysis across function, file, and inter-function levels and employs four diverse zero-shot prompt strategies: Baseline, Chain-of-Thought, Think, and Think & Verify. Through this evaluation, we uncover that structured reasoning prompts substantially improve LLM performance, with Think & Verify reducing ambiguous responses from 20.3% to 9.1% while increasing accuracy. We further demonstrate that code-specialized models consistently outperform general-purpose alternatives, with performance varying significantly across vulnerability types, revealing that no single approach universally excels across all security contexts. Link to dataset and codes: https://github.com/Erroristotle/VulnSage.git

Nebula: Self-Attention for Dynamic Malware Analysis

Dynamic analysis enables detecting Windows malware by executing programs in a controlled environment and logging their actions. Previous work has proposed training machine learning models, i.e., convolutional and long short-term memory networks, on homogeneous input features like runtime APIs to either detect or classify malware, neglecting other relevant information coming from heterogeneous data like network and file operations. To overcome these issues, we introduce Nebula, a versatile, self-attention Transformer-based neural architecture that generalizes across different behavioral representations and formats, combining diverse information from dynamic log reports. Nebula is composed by several components needed to tokenize, filter, normalize and encode data to feed the transformer architecture. We firstly perform a comprehensive ablation study to evaluate their impact on the performance of the whole system, highlighting which components can be used as-is, and which must be enriched with specific domain knowledge. We perform extensive experiments on both malware detection and classification tasks, using three datasets acquired from different dynamic analyses platforms, show that, on average, Nebula outperforms state-of-the-art models at low false positive rates, with a peak of 12% improvement. Moreover, we showcase how self-supervised learning pre-training matches the performance of fully-supervised models with only 20% of training data, and we inspect the output of Nebula through explainable AI techniques, pinpointing how attention is focusing on specific tokens correlated to malicious activities of malware families. To foster reproducibility, we open-source our findings and models at https://github.com/dtrizna/nebula.

CyberLLMInstruct: A New Dataset for Analysing Safety of Fine-Tuned LLMs Using Cyber Security Data

The integration of large language models (LLMs) into cyber security applications presents significant opportunities, such as enhancing threat analysis and malware detection, but can also introduce critical risks and safety concerns, including personal data leakage and automated generation of new malware. To address these challenges, we developed CyberLLMInstruct, a dataset of 54,928 instruction-response pairs spanning cyber security tasks such as malware analysis, phishing simulations, and zero-day vulnerabilities. The dataset was constructed through a multi-stage process. This involved sourcing data from multiple resources, filtering and structuring it into instruction-response pairs, and aligning it with real-world scenarios to enhance its applicability. Seven open-source LLMs were chosen to test the usefulness of CyberLLMInstruct: Phi 3 Mini 3.8B, Mistral 7B, Qwen 2.5 7B, Llama 3 8B, Llama 3.1 8B, Gemma 2 9B, and Llama 2 70B. In our primary example, we rigorously assess the safety of fine-tuned models using the OWASP top 10 framework, finding that fine-tuning reduces safety resilience across all tested LLMs and every adversarial attack (e.g., the security score of Llama 3.1 8B against prompt injection drops from 0.95 to 0.15). In our second example, we show that these same fine-tuned models can also achieve up to 92.50 percent accuracy on the CyberMetric benchmark. These findings highlight a trade-off between performance and safety, showing the importance of adversarial testing and further research into fine-tuning methodologies that can mitigate safety risks while still improving performance across diverse datasets and domains. The dataset creation pipeline, along with comprehensive documentation, examples, and resources for reproducing our results, is publicly available at https://github.com/Adelsamir01/CyberLLMInstruct.

SEC-bench: Automated Benchmarking of LLM Agents on Real-World Software Security Tasks

Rigorous security-focused evaluation of large language model (LLM) agents is imperative for establishing trust in their safe deployment throughout the software development lifecycle. However, existing benchmarks largely rely on synthetic challenges or simplified vulnerability datasets that fail to capture the complexity and ambiguity encountered by security engineers in practice. We introduce SEC-bench, the first fully automated benchmarking framework for evaluating LLM agents on authentic security engineering tasks. SEC-bench employs a novel multi-agent scaffold that automatically constructs code repositories with harnesses, reproduces vulnerabilities in isolated environments, and generates gold patches for reliable evaluation. Our framework automatically creates high-quality software vulnerability datasets with reproducible artifacts at a cost of only $0.87 per instance. Using SEC-bench, we implement two critical software security tasks to rigorously evaluate LLM agents' capabilities: proof-of-concept (PoC) generation and vulnerability patching. A comprehensive evaluation of state-of-the-art LLM code agents reveals significant performance gaps, achieving at most 18.0% success in PoC generation and 34.0% in vulnerability patching on our complete dataset. These results highlight the crucial steps needed toward developing LLM agents that are more practical, intelligent, and autonomous for security engineering.

Is Your AI-Generated Code Really Safe? Evaluating Large Language Models on Secure Code Generation with CodeSecEval

Large language models (LLMs) have brought significant advancements to code generation and code repair, benefiting both novice and experienced developers. However, their training using unsanitized data from open-source repositories, like GitHub, raises the risk of inadvertently propagating security vulnerabilities. Despite numerous studies investigating the safety of code LLMs, there remains a gap in comprehensively addressing their security features. In this work, we aim to present a comprehensive study aimed at precisely evaluating and enhancing the security aspects of code LLMs. To support our research, we introduce CodeSecEval, a meticulously curated dataset designed to address 44 critical vulnerability types with 180 distinct samples. CodeSecEval serves as the foundation for the automatic evaluation of code models in two crucial tasks: code generation and code repair, with a strong emphasis on security. Our experimental results reveal that current models frequently overlook security issues during both code generation and repair processes, resulting in the creation of vulnerable code. In response, we propose different strategies that leverage vulnerability-aware information and insecure code explanations to mitigate these security vulnerabilities. Furthermore, our findings highlight that certain vulnerability types particularly challenge model performance, influencing their effectiveness in real-world applications. Based on these findings, we believe our study will have a positive impact on the software engineering community, inspiring the development of improved methods for training and utilizing LLMs, thereby leading to safer and more trustworthy model deployment.

Enhancing Large Language Models for Secure Code Generation: A Dataset-driven Study on Vulnerability Mitigation

Large language models (LLMs) have brought significant advancements to code generation, benefiting both novice and experienced developers. However, their training using unsanitized data from open-source repositories, like GitHub, introduces the risk of inadvertently propagating security vulnerabilities. To effectively mitigate this concern, this paper presents a comprehensive study focused on evaluating and enhancing code LLMs from a software security perspective. We introduce SecuCoGenSecuCoGen has been uploaded as supplemental material and will be made publicly available after publication., a meticulously curated dataset targeting 21 critical vulnerability types. SecuCoGen comprises 180 samples and serves as the foundation for conducting experiments on three crucial code-related tasks: code generation, code repair and vulnerability classification, with a strong emphasis on security. Our experimental results reveal that existing models often overlook security concerns during code generation, leading to the generation of vulnerable code. To address this, we propose effective approaches to mitigate the security vulnerabilities and enhance the overall robustness of code generated by LLMs. Moreover, our study identifies weaknesses in existing models' ability to repair vulnerable code, even when provided with vulnerability information. Additionally, certain vulnerability types pose challenges for the models, hindering their performance in vulnerability classification. Based on these findings, we believe our study will have a positive impact on the software engineering community, inspiring the development of improved methods for training and utilizing LLMs, thereby leading to safer and more trustworthy model deployment.

LibVulnWatch: A Deep Assessment Agent System and Leaderboard for Uncovering Hidden Vulnerabilities in Open-Source AI Libraries

Open-source AI libraries are foundational to modern AI systems but pose significant, underexamined risks across security, licensing, maintenance, supply chain integrity, and regulatory compliance. We present LibVulnWatch, a graph-based agentic assessment framework that performs deep, source-grounded evaluations of these libraries. Built on LangGraph, the system coordinates a directed acyclic graph of specialized agents to extract, verify, and quantify risk using evidence from trusted sources such as repositories, documentation, and vulnerability databases. LibVulnWatch generates reproducible, governance-aligned scores across five critical domains, publishing them to a public leaderboard for longitudinal ecosystem monitoring. Applied to 20 widely used libraries, including ML frameworks, LLM inference engines, and agent orchestration tools, our system covers up to 88% of OpenSSF Scorecard checks while uncovering up to 19 additional risks per library. These include critical Remote Code Execution (RCE) vulnerabilities, absent Software Bills of Materials (SBOMs), licensing constraints, undocumented telemetry, and widespread gaps in regulatory documentation and auditability. By translating high-level governance principles into practical, verifiable metrics, LibVulnWatch advances technical AI governance with a scalable, transparent mechanism for continuous supply chain risk assessment and informed library selection.

Models Are Codes: Towards Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs

The proliferation of pre-trained models (PTMs) and datasets has led to the emergence of centralized model hubs like Hugging Face, which facilitate collaborative development and reuse. However, recent security reports have uncovered vulnerabilities and instances of malicious attacks within these platforms, highlighting growing security concerns. This paper presents the first systematic study of malicious code poisoning attacks on pre-trained model hubs, focusing on the Hugging Face platform. We conduct a comprehensive threat analysis, develop a taxonomy of model formats, and perform root cause analysis of vulnerable formats. While existing tools like Fickling and ModelScan offer some protection, they face limitations in semantic-level analysis and comprehensive threat detection. To address these challenges, we propose MalHug, an end-to-end pipeline tailored for Hugging Face that combines dataset loading script extraction, model deserialization, in-depth taint analysis, and heuristic pattern matching to detect and classify malicious code poisoning attacks in datasets and models. In collaboration with Ant Group, a leading financial technology company, we have implemented and deployed MalHug on a mirrored Hugging Face instance within their infrastructure, where it has been operational for over three months. During this period, MalHug has monitored more than 705K models and 176K datasets, uncovering 91 malicious models and 9 malicious dataset loading scripts. These findings reveal a range of security threats, including reverse shell, browser credential theft, and system reconnaissance. This work not only bridges a critical gap in understanding the security of the PTM supply chain but also provides a practical, industry-tested solution for enhancing the security of pre-trained model hubs.

DiverseVul: A New Vulnerable Source Code Dataset for Deep Learning Based Vulnerability Detection

We propose and release a new vulnerable source code dataset. We curate the dataset by crawling security issue websites, extracting vulnerability-fixing commits and source codes from the corresponding projects. Our new dataset contains 18,945 vulnerable functions spanning 150 CWEs and 330,492 non-vulnerable functions extracted from 7,514 commits. Our dataset covers 295 more projects than all previous datasets combined. Combining our new dataset with previous datasets, we present an analysis of the challenges and promising research directions of using deep learning for detecting software vulnerabilities. We study 11 model architectures belonging to 4 families. Our results show that deep learning is still not ready for vulnerability detection, due to high false positive rate, low F1 score, and difficulty of detecting hard CWEs. In particular, we demonstrate an important generalization challenge for the deployment of deep learning-based models. We show that increasing the volume of training data may not further improve the performance of deep learning models for vulnerability detection, but might be useful to improve the generalization ability to unseen projects. We also identify hopeful future research directions. We demonstrate that large language models (LLMs) are a promising research direction for ML-based vulnerability detection, outperforming Graph Neural Networks (GNNs) with code-structure features in our experiments. Moreover, developing source code specific pre-training objectives is a promising research direction to improve the vulnerability detection performance.

Deep Learning based Vulnerability Detection: Are We There Yet?

Automated detection of software vulnerabilities is a fundamental problem in software security. Existing program analysis techniques either suffer from high false positives or false negatives. Recent progress in Deep Learning (DL) has resulted in a surge of interest in applying DL for automated vulnerability detection. Several recent studies have demonstrated promising results achieving an accuracy of up to 95% at detecting vulnerabilities. In this paper, we ask, "how well do the state-of-the-art DL-based techniques perform in a real-world vulnerability prediction scenario?". To our surprise, we find that their performance drops by more than 50%. A systematic investigation of what causes such precipitous performance drop reveals that existing DL-based vulnerability prediction approaches suffer from challenges with the training data (e.g., data duplication, unrealistic distribution of vulnerable classes, etc.) and with the model choices (e.g., simple token-based models). As a result, these approaches often do not learn features related to the actual cause of the vulnerabilities. Instead, they learn unrelated artifacts from the dataset (e.g., specific variable/function names, etc.). Leveraging these empirical findings, we demonstrate how a more principled approach to data collection and model design, based on realistic settings of vulnerability prediction, can lead to better solutions. The resulting tools perform significantly better than the studied baseline: up to 33.57% boost in precision and 128.38% boost in recall compared to the best performing model in the literature. Overall, this paper elucidates existing DL-based vulnerability prediction systems' potential issues and draws a roadmap for future DL-based vulnerability prediction research. In that spirit, we make available all the artifacts supporting our results: https://git.io/Jf6IA.

JailbreakBench: An Open Robustness Benchmark for Jailbreaking Large Language Models

Jailbreak attacks cause large language models (LLMs) to generate harmful, unethical, or otherwise objectionable content. Evaluating these attacks presents a number of challenges, which the current collection of benchmarks and evaluation techniques do not adequately address. First, there is no clear standard of practice regarding jailbreaking evaluation. Second, existing works compute costs and success rates in incomparable ways. And third, numerous works are not reproducible, as they withhold adversarial prompts, involve closed-source code, or rely on evolving proprietary APIs. To address these challenges, we introduce JailbreakBench, an open-sourced benchmark with the following components: (1) an evolving repository of state-of-the-art adversarial prompts, which we refer to as jailbreak artifacts; (2) a jailbreaking dataset comprising 100 behaviors -- both original and sourced from prior work -- which align with OpenAI's usage policies; (3) a standardized evaluation framework that includes a clearly defined threat model, system prompts, chat templates, and scoring functions; and (4) a leaderboard that tracks the performance of attacks and defenses for various LLMs. We have carefully considered the potential ethical implications of releasing this benchmark, and believe that it will be a net positive for the community. Over time, we will expand and adapt the benchmark to reflect technical and methodological advances in the research community.

A Vulnerability Code Intent Summary Dataset

In the era of Large Language Models (LLMs), the code summarization technique boosts a lot, along with the emergence of many new significant works. However, the potential of code summarization in the Computer Security Area still remains explored. Can we generate a code summary of a code snippet for its security intention? Thus, this work proposes an innovative large-scale multi-perspective Code Intent Summary Dataset named BADS , aiming to increase the understanding of a given code snippet and reduce the risk in the code developing process. The procedure of establishing a dataset can be divided into four steps: First, we collect samples of codes with known vulnerabilities as well as code generated by AI from multiple sources. Second, we do the data clean and format unification, then do the data combination. Third, we utilize the LLM to automatically Annotate the code snippet. Last, We do the human evaluation to double-check. The dataset contains X code examples which cover Y categories of vulnerability. Our data are from Z open-source projects and CVE entries, and compared to existing work, our dataset not only contains original code but also code function summary and security intent summary, providing context information for research in code security analysis. All information is in CSV format. The contributions of this paper are four-fold: the establishment of a high-quality, multi-perspective Code Intent Summary Dataset; an innovative method in data collection and processing; A new multi-perspective code analysis framework that promotes cross-disciplinary research in the fields of software engineering and cybersecurity; improving the practicality and scalability of the research outcomes by considering the code length limitations in real-world applications. Our dataset and related tools have been publicly released on GitHub.

Beyond Benchmarks: Dynamic, Automatic And Systematic Red-Teaming Agents For Trustworthy Medical Language Models

Ensuring the safety and reliability of large language models (LLMs) in clinical practice is critical to prevent patient harm and promote trustworthy healthcare applications of AI. However, LLMs are advancing so rapidly that static safety benchmarks often become obsolete upon publication, yielding only an incomplete and sometimes misleading picture of model trustworthiness. We demonstrate that a Dynamic, Automatic, and Systematic (DAS) red-teaming framework that continuously stress-tests LLMs can reveal significant weaknesses of current LLMs across four safety-critical domains: robustness, privacy, bias/fairness, and hallucination. A suite of adversarial agents is applied to autonomously mutate test cases, identify/evolve unsafe-triggering strategies, and evaluate responses, uncovering vulnerabilities in real time without human intervention. Applying DAS to 15 proprietary and open-source LLMs revealed a stark contrast between static benchmark performance and vulnerability under adversarial pressure. Despite a median MedQA accuracy exceeding 80\%, 94\% of previously correct answers failed our dynamic robustness tests. We observed similarly high failure rates across other domains: privacy leaks were elicited in 86\% of scenarios, cognitive-bias priming altered clinical recommendations in 81\% of fairness tests, and we identified hallucination rates exceeding 66\% in widely used models. Such profound residual risks are incompatible with routine clinical practice. By converting red-teaming from a static checklist into a dynamic stress-test audit, DAS red-teaming offers the surveillance that hospitals/regulators/technology vendors require as LLMs become embedded in patient chatbots, decision-support dashboards, and broader healthcare workflows. Our framework delivers an evolvable, scalable, and reliable safeguard for the next generation of medical AI.

Running in CIRCLE? A Simple Benchmark for LLM Code Interpreter Security

As large language models (LLMs) increasingly integrate native code interpreters, they enable powerful real-time execution capabilities, substantially expanding their utility. However, such integrations introduce potential system-level cybersecurity threats, fundamentally different from prompt-based vulnerabilities. To systematically evaluate these interpreter-specific risks, we propose CIRCLE (Code-Interpreter Resilience Check for LLM Exploits), a simple benchmark comprising 1,260 prompts targeting CPU, memory, and disk resource exhaustion. Each risk category includes explicitly malicious ("direct") and plausibly benign ("indirect") prompt variants. Our automated evaluation framework assesses not only whether LLMs refuse or generates risky code, but also executes the generated code within the interpreter environment to evaluate code correctness, simplifications made by the LLM to make the code safe, or execution timeouts. Evaluating 7 commercially available models from OpenAI and Google, we uncover significant and inconsistent vulnerabilities. For instance, evaluations show substantial disparities even within providers - OpenAI's o4-mini correctly refuses risky requests at 7.1%, notably higher rates compared to GPT-4.1 at 0.5%. Results particularly underscore that indirect, socially-engineered prompts substantially weaken model defenses. This highlights an urgent need for interpreter-specific cybersecurity benchmarks, dedicated mitigation tools (e.g., guardrails), and clear industry standards to guide safe and responsible deployment of LLM interpreter integrations. The benchmark dataset and evaluation code are publicly released to foster further research.

PandaGuard: Systematic Evaluation of LLM Safety against Jailbreaking Attacks

Large language models (LLMs) have achieved remarkable capabilities but remain vulnerable to adversarial prompts known as jailbreaks, which can bypass safety alignment and elicit harmful outputs. Despite growing efforts in LLM safety research, existing evaluations are often fragmented, focused on isolated attack or defense techniques, and lack systematic, reproducible analysis. In this work, we introduce PandaGuard, a unified and modular framework that models LLM jailbreak safety as a multi-agent system comprising attackers, defenders, and judges. Our framework implements 19 attack methods and 12 defense mechanisms, along with multiple judgment strategies, all within a flexible plugin architecture supporting diverse LLM interfaces, multiple interaction modes, and configuration-driven experimentation that enhances reproducibility and practical deployment. Built on this framework, we develop PandaBench, a comprehensive benchmark that evaluates the interactions between these attack/defense methods across 49 LLMs and various judgment approaches, requiring over 3 billion tokens to execute. Our extensive evaluation reveals key insights into model vulnerabilities, defense cost-performance trade-offs, and judge consistency. We find that no single defense is optimal across all dimensions and that judge disagreement introduces nontrivial variance in safety assessments. We release the code, configurations, and evaluation results to support transparent and reproducible research in LLM safety.

Clone What You Can't Steal: Black-Box LLM Replication via Logit Leakage and Distillation

Large Language Models (LLMs) are increasingly deployed in mission-critical systems, facilitating tasks such as satellite operations, command-and-control, military decision support, and cyber defense. Many of these systems are accessed through application programming interfaces (APIs). When such APIs lack robust access controls, they can expose full or top-k logits, creating a significant and often overlooked attack surface. Prior art has mainly focused on reconstructing the output projection layer or distilling surface-level behaviors. However, regenerating a black-box model under tight query constraints remains underexplored. We address that gap by introducing a constrained replication pipeline that transforms partial logit leakage into a functional deployable substitute model clone. Our two-stage approach (i) reconstructs the output projection matrix by collecting top-k logits from under 10k black-box queries via singular value decomposition (SVD) over the logits, then (ii) distills the remaining architecture into compact student models with varying transformer depths, trained on an open source dataset. A 6-layer student recreates 97.6% of the 6-layer teacher model's hidden-state geometry, with only a 7.31% perplexity increase, and a 7.58 Negative Log-Likelihood (NLL). A 4-layer variant achieves 17.1% faster inference and 18.1% parameter reduction with comparable performance. The entire attack completes in under 24 graphics processing unit (GPU) hours and avoids triggering API rate-limit defenses. These results demonstrate how quickly a cost-limited adversary can clone an LLM, underscoring the urgent need for hardened inference APIs and secure on-premise defense deployments.

Learning to Quantize Vulnerability Patterns and Match to Locate Statement-Level Vulnerabilities

Deep learning (DL) models have become increasingly popular in identifying software vulnerabilities. Prior studies found that vulnerabilities across different vulnerable programs may exhibit similar vulnerable scopes, implicitly forming discernible vulnerability patterns that can be learned by DL models through supervised training. However, vulnerable scopes still manifest in various spatial locations and formats within a program, posing challenges for models to accurately identify vulnerable statements. Despite this challenge, state-of-the-art vulnerability detection approaches fail to exploit the vulnerability patterns that arise in vulnerable programs. To take full advantage of vulnerability patterns and unleash the ability of DL models, we propose a novel vulnerability-matching approach in this paper, drawing inspiration from program analysis tools that locate vulnerabilities based on pre-defined patterns. Specifically, a vulnerability codebook is learned, which consists of quantized vectors representing various vulnerability patterns. During inference, the codebook is iterated to match all learned patterns and predict the presence of potential vulnerabilities within a given program. Our approach was extensively evaluated on a real-world dataset comprising more than 188,000 C/C++ functions. The evaluation results show that our approach achieves an F1-score of 94% (6% higher than the previous best) and 82% (19% higher than the previous best) for function and statement-level vulnerability identification, respectively. These substantial enhancements highlight the effectiveness of our approach to identifying vulnerabilities. The training code and pre-trained models are available at https://github.com/optimatch/optimatch.

LLM-Assisted Proactive Threat Intelligence for Automated Reasoning

Successful defense against dynamically evolving cyber threats requires advanced and sophisticated techniques. This research presents a novel approach to enhance real-time cybersecurity threat detection and response by integrating large language models (LLMs) and Retrieval-Augmented Generation (RAG) systems with continuous threat intelligence feeds. Leveraging recent advancements in LLMs, specifically GPT-4o, and the innovative application of RAG techniques, our approach addresses the limitations of traditional static threat analysis by incorporating dynamic, real-time data sources. We leveraged RAG to get the latest information in real-time for threat intelligence, which is not possible in the existing GPT-4o model. We employ the Patrowl framework to automate the retrieval of diverse cybersecurity threat intelligence feeds, including Common Vulnerabilities and Exposures (CVE), Common Weakness Enumeration (CWE), Exploit Prediction Scoring System (EPSS), and Known Exploited Vulnerabilities (KEV) databases, and integrate these with the all-mpnet-base-v2 model for high-dimensional vector embeddings, stored and queried in Milvus. We demonstrate our system's efficacy through a series of case studies, revealing significant improvements in addressing recently disclosed vulnerabilities, KEVs, and high-EPSS-score CVEs compared to the baseline GPT-4o. This work not only advances the role of LLMs in cybersecurity but also establishes a robust foundation for the development of automated intelligent cyberthreat information management systems, addressing crucial gaps in current cybersecurity practices.

LLMxCPG: Context-Aware Vulnerability Detection Through Code Property Graph-Guided Large Language Models

Software vulnerabilities present a persistent security challenge, with over 25,000 new vulnerabilities reported in the Common Vulnerabilities and Exposures (CVE) database in 2024 alone. While deep learning based approaches show promise for vulnerability detection, recent studies reveal critical limitations in terms of accuracy and robustness: accuracy drops by up to 45% on rigorously verified datasets, and performance degrades significantly under simple code modifications. This paper presents LLMxCPG, a novel framework integrating Code Property Graphs (CPG) with Large Language Models (LLM) for robust vulnerability detection. Our CPG-based slice construction technique reduces code size by 67.84 to 90.93% while preserving vulnerability-relevant context. Our approach's ability to provide a more concise and accurate representation of code snippets enables the analysis of larger code segments, including entire projects. This concise representation is a key factor behind the improved detection capabilities of our method, as it can now identify vulnerabilities that span multiple functions. Empirical evaluation demonstrates LLMxCPG's effectiveness across verified datasets, achieving 15-40% improvements in F1-score over state-of-the-art baselines. Moreover, LLMxCPG maintains high performance across function-level and multi-function codebases while exhibiting robust detection efficacy under various syntactic code modifications.

Computational reproducibility of Jupyter notebooks from biomedical publications

Jupyter notebooks facilitate the bundling of executable code with its documentation and output in one interactive environment, and they represent a popular mechanism to document and share computational workflows. The reproducibility of computational aspects of research is a key component of scientific reproducibility but has not yet been assessed at scale for Jupyter notebooks associated with biomedical publications. We address computational reproducibility at two levels: First, using fully automated workflows, we analyzed the computational reproducibility of Jupyter notebooks related to publications indexed in PubMed Central. We identified such notebooks by mining the articles full text, locating them on GitHub and re-running them in an environment as close to the original as possible. We documented reproduction success and exceptions and explored relationships between notebook reproducibility and variables related to the notebooks or publications. Second, this study represents a reproducibility attempt in and of itself, using essentially the same methodology twice on PubMed Central over two years. Out of 27271 notebooks from 2660 GitHub repositories associated with 3467 articles, 22578 notebooks were written in Python, including 15817 that had their dependencies declared in standard requirement files and that we attempted to re-run automatically. For 10388 of these, all declared dependencies could be installed successfully, and we re-ran them to assess reproducibility. Of these, 1203 notebooks ran through without any errors, including 879 that produced results identical to those reported in the original notebook and 324 for which our results differed from the originally reported ones. Running the other notebooks resulted in exceptions. We zoom in on common problems, highlight trends and discuss potential improvements to Jupyter-related workflows associated with biomedical publications.

USB: A Comprehensive and Unified Safety Evaluation Benchmark for Multimodal Large Language Models

Despite their remarkable achievements and widespread adoption, Multimodal Large Language Models (MLLMs) have revealed significant security vulnerabilities, highlighting the urgent need for robust safety evaluation benchmarks. Existing MLLM safety benchmarks, however, fall short in terms of data quality and coverge, and modal risk combinations, resulting in inflated and contradictory evaluation results, which hinders the discovery and governance of security concerns. Besides, we argue that vulnerabilities to harmful queries and oversensitivity to harmless ones should be considered simultaneously in MLLMs safety evaluation, whereas these were previously considered separately. In this paper, to address these shortcomings, we introduce Unified Safety Benchmarks (USB), which is one of the most comprehensive evaluation benchmarks in MLLM safety. Our benchmark features high-quality queries, extensive risk categories, comprehensive modal combinations, and encompasses both vulnerability and oversensitivity evaluations. From the perspective of two key dimensions: risk categories and modality combinations, we demonstrate that the available benchmarks -- even the union of the vast majority of them -- are far from being truly comprehensive. To bridge this gap, we design a sophisticated data synthesis pipeline that generates extensive, high-quality complementary data addressing previously unexplored aspects. By combining open-source datasets with our synthetic data, our benchmark provides 4 distinct modality combinations for each of the 61 risk sub-categories, covering both English and Chinese across both vulnerability and oversensitivity dimensions.

VulDeePecker: A Deep Learning-Based System for Vulnerability Detection

The automatic detection of software vulnerabilities is an important research problem. However, existing solutions to this problem rely on human experts to define features and often miss many vulnerabilities (i.e., incurring high false negative rate). In this paper, we initiate the study of using deep learning-based vulnerability detection to relieve human experts from the tedious and subjective task of manually defining features. Since deep learning is motivated to deal with problems that are very different from the problem of vulnerability detection, we need some guiding principles for applying deep learning to vulnerability detection. In particular, we need to find representations of software programs that are suitable for deep learning. For this purpose, we propose using code gadgets to represent programs and then transform them into vectors, where a code gadget is a number of (not necessarily consecutive) lines of code that are semantically related to each other. This leads to the design and implementation of a deep learning-based vulnerability detection system, called Vulnerability Deep Pecker (VulDeePecker). In order to evaluate VulDeePecker, we present the first vulnerability dataset for deep learning approaches. Experimental results show that VulDeePecker can achieve much fewer false negatives (with reasonable false positives) than other approaches. We further apply VulDeePecker to 3 software products (namely Xen, Seamonkey, and Libav) and detect 4 vulnerabilities, which are not reported in the National Vulnerability Database but were "silently" patched by the vendors when releasing later versions of these products; in contrast, these vulnerabilities are almost entirely missed by the other vulnerability detection systems we experimented with.

Benchmarking Adversarial Robustness to Bias Elicitation in Large Language Models: Scalable Automated Assessment with LLM-as-a-Judge

Large Language Models (LLMs) have revolutionized artificial intelligence, driving advancements in machine translation, summarization, and conversational agents. However, their increasing integration into critical societal domains has raised concerns about embedded biases, which can perpetuate stereotypes and compromise fairness. These biases stem from various sources, including historical inequalities in training data, linguistic imbalances, and adversarial manipulation. Despite mitigation efforts, recent studies indicate that LLMs remain vulnerable to adversarial attacks designed to elicit biased responses. This work proposes a scalable benchmarking framework to evaluate LLM robustness against adversarial bias elicitation. Our methodology involves (i) systematically probing models with a multi-task approach targeting biases across various sociocultural dimensions, (ii) quantifying robustness through safety scores using an LLM-as-a-Judge approach for automated assessment of model responses, and (iii) employing jailbreak techniques to investigate vulnerabilities in safety mechanisms. Our analysis examines prevalent biases in both small and large state-of-the-art models and their impact on model safety. Additionally, we assess the safety of domain-specific models fine-tuned for critical fields, such as medicine. Finally, we release a curated dataset of bias-related prompts, CLEAR-Bias, to facilitate systematic vulnerability benchmarking. Our findings reveal critical trade-offs between model size and safety, aiding the development of fairer and more robust future language models.

Model Tampering Attacks Enable More Rigorous Evaluations of LLM Capabilities

Evaluations of large language model (LLM) risks and capabilities are increasingly being incorporated into AI risk management and governance frameworks. Currently, most risk evaluations are conducted by designing inputs that elicit harmful behaviors from the system. However, a fundamental limitation of this approach is that the harmfulness of the behaviors identified during any particular evaluation can only lower bound the model's worst-possible-case behavior. As a complementary method for eliciting harmful behaviors, we propose evaluating LLMs with model tampering attacks which allow for modifications to latent activations or weights. We pit state-of-the-art techniques for removing harmful LLM capabilities against a suite of 5 input-space and 6 model tampering attacks. In addition to benchmarking these methods against each other, we show that (1) model resilience to capability elicitation attacks lies on a low-dimensional robustness subspace; (2) the attack success rate of model tampering attacks can empirically predict and offer conservative estimates for the success of held-out input-space attacks; and (3) state-of-the-art unlearning methods can easily be undone within 16 steps of fine-tuning. Together these results highlight the difficulty of removing harmful LLM capabilities and show that model tampering attacks enable substantially more rigorous evaluations than input-space attacks alone. We release models at https://huggingface.co/LLM-GAT

Assessing Language Model Deployment with Risk Cards

This paper introduces RiskCards, a framework for structured assessment and documentation of risks associated with an application of language models. As with all language, text generated by language models can be harmful, or used to bring about harm. Automating language generation adds both an element of scale and also more subtle or emergent undesirable tendencies to the generated text. Prior work establishes a wide variety of language model harms to many different actors: existing taxonomies identify categories of harms posed by language models; benchmarks establish automated tests of these harms; and documentation standards for models, tasks and datasets encourage transparent reporting. However, there is no risk-centric framework for documenting the complexity of a landscape in which some risks are shared across models and contexts, while others are specific, and where certain conditions may be required for risks to manifest as harms. RiskCards address this methodological gap by providing a generic framework for assessing the use of a given language model in a given scenario. Each RiskCard makes clear the routes for the risk to manifest harm, their placement in harm taxonomies, and example prompt-output pairs. While RiskCards are designed to be open-source, dynamic and participatory, we present a "starter set" of RiskCards taken from a broad literature survey, each of which details a concrete risk presentation. Language model RiskCards initiate a community knowledge base which permits the mapping of risks and harms to a specific model or its application scenario, ultimately contributing to a better, safer and shared understanding of the risk landscape.

Generate and Pray: Using SALLMS to Evaluate the Security of LLM Generated Code

With the growing popularity of Large Language Models (e.g. GitHub Copilot, ChatGPT, etc.) in software engineers' daily practices, it is important to ensure that the code generated by these tools is not only functionally correct but also free of vulnerabilities. Although LLMs can help developers to be more productive, prior empirical studies have shown that LLMs can generate insecure code. There are two contributing factors to the insecure code generation. First, existing datasets used to evaluate Large Language Models (LLMs) do not adequately represent genuine software engineering tasks sensitive to security. Instead, they are often based on competitive programming challenges or classroom-type coding tasks. In real-world applications, the code produced is integrated into larger codebases, introducing potential security risks. There's a clear absence of benchmarks that focus on evaluating the security of the generated code. Second, existing evaluation metrics primarily focus on the functional correctness of the generated code while ignoring security considerations. Metrics such as pass@k gauge the probability of obtaining the correct code in the top k suggestions. Other popular metrics like BLEU, CodeBLEU, ROUGE, and METEOR similarly emphasize functional accuracy, neglecting security implications. In light of these research gaps, in this paper, we described SALLM, a framework to benchmark LLMs' abilities to generate secure code systematically. This framework has three major components: a novel dataset of security-centric Python prompts, an evaluation environment to test the generated code, and novel metrics to evaluate the models' performance from the perspective of secure code generation.

FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset

The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.

SAGE-RT: Synthetic Alignment data Generation for Safety Evaluation and Red Teaming

We introduce Synthetic Alignment data Generation for Safety Evaluation and Red Teaming (SAGE-RT or SAGE) a novel pipeline for generating synthetic alignment and red-teaming data. Existing methods fall short in creating nuanced and diverse datasets, providing necessary control over the data generation and validation processes, or require large amount of manually generated seed data. SAGE addresses these limitations by using a detailed taxonomy to produce safety-alignment and red-teaming data across a wide range of topics. We generated 51,000 diverse and in-depth prompt-response pairs, encompassing over 1,500 topics of harmfulness and covering variations of the most frequent types of jailbreaking prompts faced by large language models (LLMs). We show that the red-teaming data generated through SAGE jailbreaks state-of-the-art LLMs in more than 27 out of 32 sub-categories, and in more than 58 out of 279 leaf-categories (sub-sub categories). The attack success rate for GPT-4o, GPT-3.5-turbo is 100% over the sub-categories of harmfulness. Our approach avoids the pitfalls of synthetic safety-training data generation such as mode collapse and lack of nuance in the generation pipeline by ensuring a detailed coverage of harmful topics using iterative expansion of the topics and conditioning the outputs on the generated raw-text. This method can be used to generate red-teaming and alignment data for LLM Safety completely synthetically to make LLMs safer or for red-teaming the models over a diverse range of topics.

Cracks in The Stack: Hidden Vulnerabilities and Licensing Risks in LLM Pre-Training Datasets

A critical part of creating code suggestion systems is the pre-training of Large Language Models on vast amounts of source code and natural language text, often of questionable origin or quality. This may contribute to the presence of bugs and vulnerabilities in code generated by LLMs. While efforts to identify bugs at or after code generation exist, it is preferable to pre-train or fine-tune LLMs on curated, high-quality, and compliant datasets. The need for vast amounts of training data necessitates that such curation be automated, minimizing human intervention. We propose an automated source code autocuration technique that leverages the complete version history of open-source software projects to improve the quality of training data. This approach leverages the version history of all OSS projects to identify training data samples that have been modified or have undergone changes in at least one OSS project, and pinpoint a subset of samples that include fixes for bugs or vulnerabilities. We evaluate this method using The Stack v2 dataset, and find that 17% of the code versions in the dataset have newer versions, with 17% of those representing bug fixes, including 2.36% addressing known CVEs. The deduplicated version of Stack v2 still includes blobs vulnerable to 6,947 known CVEs. Furthermore, 58% of the blobs in the dataset were never modified after creation, suggesting they likely represent software with minimal or no use. Misidentified blob origins present an additional challenge, as they lead to the inclusion of non-permissively licensed code, raising serious compliance concerns. By addressing these issues, the training of new models can avoid perpetuating buggy code patterns or license violations. We expect our results to inspire process improvements for automated data curation, with the potential to enhance the reliability of outputs generated by AI tools.

Benchmarking Large Language Models for Multi-Language Software Vulnerability Detection

Recent advancements in generative AI have led to the widespread adoption of large language models (LLMs) in software engineering, addressing numerous long-standing challenges. However, a comprehensive study examining the capabilities of LLMs in software vulnerability detection (SVD), a crucial aspect of software security, is currently lacking. Existing research primarily focuses on evaluating LLMs using C/C++ datasets. It typically explores only one or two strategies among prompt engineering, instruction tuning, and sequence classification fine-tuning for open-source LLMs. Consequently, there is a significant knowledge gap regarding the effectiveness of diverse LLMs in detecting vulnerabilities across various programming languages. To address this knowledge gap, we present a comprehensive empirical study evaluating the performance of LLMs on the SVD task. We have compiled a comprehensive dataset comprising 8,260 vulnerable functions in Python, 7,505 in Java, and 28,983 in JavaScript. We assess five open-source LLMs using multiple approaches, including prompt engineering, instruction tuning, and sequence classification fine-tuning. These LLMs are benchmarked against five fine-tuned small language models and two open-source static application security testing tools. Furthermore, we explore two avenues to improve LLM performance on SVD: a) Data perspective: Retraining models using downsampled balanced datasets. b) Model perspective: Investigating ensemble learning methods that combine predictions from multiple LLMs. Our comprehensive experiments demonstrate that SVD remains a challenging task for LLMs. This study provides a thorough understanding of the role of LLMs in SVD and offers practical insights for future advancements in leveraging generative AI to enhance software security practices.

OSS-Bench: Benchmark Generator for Coding LLMs

In light of the rapid adoption of AI coding assistants, LLM-assisted development has become increasingly prevalent, creating an urgent need for robust evaluation of generated code quality. Existing benchmarks often require extensive manual effort to create static datasets, rely on indirect or insufficiently challenging tasks, depend on non-scalable ground truth, or neglect critical low-level security evaluations, particularly memory-safety issues. In this work, we introduce OSS-Bench, a benchmark generator that automatically constructs large-scale, live evaluation tasks from real-world open-source software. OSS-Bench replaces functions with LLM-generated code and evaluates them using three natural metrics: compilability, functional correctness, and memory safety, leveraging robust signals like compilation failures, test-suite violations, and sanitizer alerts as ground truth. In our evaluation, the benchmark, instantiated as OSS-Bench(php) and OSS-Bench(sql), profiles 17 diverse LLMs, revealing insights such as intra-family behavioral patterns and inconsistencies between model size and performance. Our results demonstrate that OSS-Bench mitigates overfitting by leveraging the evolving complexity of OSS and highlights LLMs' limited understanding of low-level code security via extended fuzzing experiments. Overall, OSS-Bench offers a practical and scalable framework for benchmarking the real-world coding capabilities of LLMs.

PRISM: Robust VLM Alignment with Principled Reasoning for Integrated Safety in Multimodality

Safeguarding vision-language models (VLMs) is a critical challenge, as existing methods often suffer from over-defense, which harms utility, or rely on shallow alignment, failing to detect complex threats that require deep reasoning. To this end, we introduce PRISM (Principled Reasoning for Integrated Safety in Multimodality), a system2-like framework that aligns VLMs by embedding a structured, safety-aware reasoning process. Our framework consists of two key components: PRISM-CoT, a dataset that teaches safety-aware chain-of-thought reasoning, and PRISM-DPO, generated via Monte Carlo Tree Search (MCTS) to further refine this reasoning through Direct Preference Optimization to help obtain a delicate safety boundary. Comprehensive evaluations demonstrate PRISM's effectiveness, achieving remarkably low attack success rates including 0.15% on JailbreakV-28K for Qwen2-VL and 90% improvement over the previous best method on VLBreak for LLaVA-1.5. PRISM also exhibits strong robustness against adaptive attacks, significantly increasing computational costs for adversaries, and generalizes effectively to out-of-distribution challenges, reducing attack success rates to just 8.70% on the challenging multi-image MIS benchmark. Remarkably, this robust defense is achieved while preserving, and in some cases enhancing, model utility. To promote reproducibility, we have made our code, data, and model weights available at https://github.com/SaFoLab-WISC/PRISM.

Eradicating the Unseen: Detecting, Exploiting, and Remediating a Path Traversal Vulnerability across GitHub

Vulnerabilities in open-source software can cause cascading effects in the modern digital ecosystem. It is especially worrying if these vulnerabilities repeat across many projects, as once the adversaries find one of them, they can scale up the attack very easily. Unfortunately, since developers frequently reuse code from their own or external code resources, some nearly identical vulnerabilities exist across many open-source projects. We conducted a study to examine the prevalence of a particular vulnerable code pattern that enables path traversal attacks (CWE-22) across open-source GitHub projects. To handle this study at the GitHub scale, we developed an automated pipeline that scans GitHub for the targeted vulnerable pattern, confirms the vulnerability by first running a static analysis and then exploiting the vulnerability in the context of the studied project, assesses its impact by calculating the CVSS score, generates a patch using GPT-4, and reports the vulnerability to the maintainers. Using our pipeline, we identified 1,756 vulnerable open-source projects, some of which are very influential. For many of the affected projects, the vulnerability is critical (CVSS score higher than 9.0), as it can be exploited remotely without any privileges and critically impact the confidentiality and availability of the system. We have responsibly disclosed the vulnerability to the maintainers, and 14\% of the reported vulnerabilities have been remediated. We also investigated the root causes of the vulnerable code pattern and assessed the side effects of the large number of copies of this vulnerable pattern that seem to have poisoned several popular LLMs. Our study highlights the urgent need to help secure the open-source ecosystem by leveraging scalable automated vulnerability management solutions and raising awareness among developers.

Can ChatGPT replace StackOverflow? A Study on Robustness and Reliability of Large Language Model Code Generation

Recently, the large language models (LLMs) have shown extraordinary ability in understanding natural language and generating programming code. It has been a common practice of software engineers to consult LLMs when encountering coding questions. Although efforts have been made to avoid syntax errors and align the code with the intended semantics, the reliability and robustness of the code generationfrom LLMs have not yet been thoroughly studied. The executable code is not equivalent to the reliable and robust code, especially in the context of real-world software development. The misuse of APIs in the generated code could lead to severe problem, such as resource leaks, program crashes. To make things worse, the users of LLM code generation services are actually the developers that are most vulnerable to these code that seems right -- They are always novice developers that are not familiar with the APIs that LLMs generate code for them. Therefore, they could hardly tell the misuse in the code generated by LLMs, which further facilitates the incorrect code applied in real-world software. Existing code evaluation benchmark and datasets focus on crafting small tasks such as programming questions in coding interviews, which however deviates from the problem that developers would ask LLM for real-world coding help. To fill the missing piece, in this work, we propose a dataset RobustAPI for evaluating the reliability and robustness of code generated by LLMs. We collect 1208 coding questions from StackOverflow on 24 representative Java APIs. We summarize thecommon misuse patterns of these APIs and evaluate them oncurrent popular LLMs. The evaluation results show that evenfor GPT-4, 62% of the generated code contains API misuses,which would cause unexpected consequences if the code isintroduced into real-world software.

EMBER2024 -- A Benchmark Dataset for Holistic Evaluation of Malware Classifiers

A lack of accessible data has historically restricted malware analysis research, and practitioners have relied heavily on datasets provided by industry sources to advance. Existing public datasets are limited by narrow scope - most include files targeting a single platform, have labels supporting just one type of malware classification task, and make no effort to capture the evasive files that make malware detection difficult in practice. We present EMBER2024, a new dataset that enables holistic evaluation of malware classifiers. Created in collaboration with the authors of EMBER2017 and EMBER2018, the EMBER2024 dataset includes hashes, metadata, feature vectors, and labels for more than 3.2 million files from six file formats. Our dataset supports the training and evaluation of machine learning models on seven malware classification tasks, including malware detection, malware family classification, and malware behavior identification. EMBER2024 is the first to include a collection of malicious files that initially went undetected by a set of antivirus products, creating a "challenge" set to assess classifier performance against evasive malware. This work also introduces EMBER feature version 3, with added support for several new feature types. We are releasing the EMBER2024 dataset to promote reproducibility and empower researchers in the pursuit of new malware research topics.

A False Sense of Safety: Unsafe Information Leakage in 'Safe' AI Responses

Large Language Models (LLMs) are vulnerable to jailbreaksx2013methods to elicit harmful or generally impermissible outputs. Safety measures are developed and assessed on their effectiveness at defending against jailbreak attacks, indicating a belief that safety is equivalent to robustness. We assert that current defense mechanisms, such as output filters and alignment fine-tuning, are, and will remain, fundamentally insufficient for ensuring model safety. These defenses fail to address risks arising from dual-intent queries and the ability to composite innocuous outputs to achieve harmful goals. To address this critical gap, we introduce an information-theoretic threat model called inferential adversaries who exploit impermissible information leakage from model outputs to achieve malicious goals. We distinguish these from commonly studied security adversaries who only seek to force victim models to generate specific impermissible outputs. We demonstrate the feasibility of automating inferential adversaries through question decomposition and response aggregation. To provide safety guarantees, we define an information censorship criterion for censorship mechanisms, bounding the leakage of impermissible information. We propose a defense mechanism which ensures this bound and reveal an intrinsic safety-utility trade-off. Our work provides the first theoretically grounded understanding of the requirements for releasing safe LLMs and the utility costs involved.

Safety at Scale: A Comprehensive Survey of Large Model Safety

The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.

Servant, Stalker, Predator: How An Honest, Helpful, And Harmless (3H) Agent Unlocks Adversarial Skills

This paper identifies and analyzes a novel vulnerability class in Model Context Protocol (MCP) based agent systems. The attack chain describes and demonstrates how benign, individually authorized tasks can be orchestrated to produce harmful emergent behaviors. Through systematic analysis using the MITRE ATLAS framework, we demonstrate how 95 agents tested with access to multiple services-including browser automation, financial analysis, location tracking, and code deployment-can chain legitimate operations into sophisticated attack sequences that extend beyond the security boundaries of any individual service. These red team exercises survey whether current MCP architectures lack cross-domain security measures necessary to detect or prevent a large category of compositional attacks. We present empirical evidence of specific attack chains that achieve targeted harm through service orchestration, including data exfiltration, financial manipulation, and infrastructure compromise. These findings reveal that the fundamental security assumption of service isolation fails when agents can coordinate actions across multiple domains, creating an exponential attack surface that grows with each additional capability. This research provides a barebones experimental framework that evaluate not whether agents can complete MCP benchmark tasks, but what happens when they complete them too well and optimize across multiple services in ways that violate human expectations and safety constraints. We propose three concrete experimental directions using the existing MCP benchmark suite.

Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science

Intelligent agents powered by large language models (LLMs) have demonstrated substantial promise in autonomously conducting experiments and facilitating scientific discoveries across various disciplines. While their capabilities are promising, they also introduce novel vulnerabilities that demand careful consideration for safety. However, there exists a notable gap in the literature, as there has been no comprehensive exploration of these vulnerabilities. This position paper fills this gap by conducting a thorough examination of vulnerabilities in LLM-based agents within scientific domains, shedding light on potential risks associated with their misuse and emphasizing the need for safety measures. We begin by providing a comprehensive overview of the potential risks inherent to scientific LLM agents, taking into account user intent, the specific scientific domain, and their potential impact on the external environment. Then, we delve into the origins of these vulnerabilities and provide a scoping review of the limited existing works. Based on our analysis, we propose a triadic framework involving human regulation, agent alignment, and an understanding of environmental feedback (agent regulation) to mitigate these identified risks. Furthermore, we highlight the limitations and challenges associated with safeguarding scientific agents and advocate for the development of improved models, robust benchmarks, and comprehensive regulations to address these issues effectively.

In-House Evaluation Is Not Enough: Towards Robust Third-Party Flaw Disclosure for General-Purpose AI

The widespread deployment of general-purpose AI (GPAI) systems introduces significant new risks. Yet the infrastructure, practices, and norms for reporting flaws in GPAI systems remain seriously underdeveloped, lagging far behind more established fields like software security. Based on a collaboration between experts from the fields of software security, machine learning, law, social science, and policy, we identify key gaps in the evaluation and reporting of flaws in GPAI systems. We call for three interventions to advance system safety. First, we propose using standardized AI flaw reports and rules of engagement for researchers in order to ease the process of submitting, reproducing, and triaging flaws in GPAI systems. Second, we propose GPAI system providers adopt broadly-scoped flaw disclosure programs, borrowing from bug bounties, with legal safe harbors to protect researchers. Third, we advocate for the development of improved infrastructure to coordinate distribution of flaw reports across the many stakeholders who may be impacted. These interventions are increasingly urgent, as evidenced by the prevalence of jailbreaks and other flaws that can transfer across different providers' GPAI systems. By promoting robust reporting and coordination in the AI ecosystem, these proposals could significantly improve the safety, security, and accountability of GPAI systems.

Understanding the Effectiveness of Large Language Models in Detecting Security Vulnerabilities

Security vulnerabilities in modern software are prevalent and harmful. While automated vulnerability detection tools have made promising progress, their scalability and applicability remain challenging. Recently, Large Language Models (LLMs), such as GPT-4 and CodeLlama, have demonstrated remarkable performance on code-related tasks. However, it is unknown whether such LLMs can do complex reasoning over code. In this work, we explore whether pre-trained LLMs can detect security vulnerabilities and address the limitations of existing tools. We evaluate the effectiveness of pre-trained LLMs on a set of five diverse security benchmarks spanning two languages, Java and C/C++, and including code samples from synthetic and real-world projects. We evaluate the effectiveness of LLMs in terms of their performance, explainability, and robustness. By designing a series of effective prompting strategies, we obtain the best results on the synthetic datasets with GPT-4: F1 scores of 0.79 on OWASP, 0.86 on Juliet Java, and 0.89 on Juliet C/C++. Expectedly, the performance of LLMs drops on the more challenging real-world datasets: CVEFixes Java and CVEFixes C/C++, with GPT-4 reporting F1 scores of 0.48 and 0.62, respectively. We show that LLMs can often perform better than existing static analysis and deep learning-based vulnerability detection tools, especially for certain classes of vulnerabilities. Moreover, LLMs also often provide reliable explanations, identifying the vulnerable data flows in code. We find that fine-tuning smaller LLMs can outperform the larger LLMs on synthetic datasets but provide limited gains on real-world datasets. When subjected to adversarial attacks on code, LLMs show mild degradation, with average accuracy reduction of up to 12.67%. Finally, we share our insights and recommendations for future work on leveraging LLMs for vulnerability detection.

S-Eval: Automatic and Adaptive Test Generation for Benchmarking Safety Evaluation of Large Language Models

Large Language Models have gained considerable attention for their revolutionary capabilities. However, there is also growing concern on their safety implications, making a comprehensive safety evaluation for LLMs urgently needed before model deployment. In this work, we propose S-Eval, a new comprehensive, multi-dimensional and open-ended safety evaluation benchmark. At the core of S-Eval is a novel LLM-based automatic test prompt generation and selection framework, which trains an expert testing LLM Mt combined with a range of test selection strategies to automatically construct a high-quality test suite for the safety evaluation. The key to the automation of this process is a novel expert safety-critique LLM Mc able to quantify the riskiness score of a LLM's response, and additionally produce risk tags and explanations. Besides, the generation process is also guided by a carefully designed risk taxonomy with four different levels, covering comprehensive and multi-dimensional safety risks of concern. Based on these, we systematically construct a new and large-scale safety evaluation benchmark for LLMs consisting of 220,000 evaluation prompts, including 20,000 base risk prompts (10,000 in Chinese and 10,000 in English) and 200, 000 corresponding attack prompts derived from 10 popular adversarial instruction attacks against LLMs. Moreover, considering the rapid evolution of LLMs and accompanied safety threats, S-Eval can be flexibly configured and adapted to include new risks, attacks and models. S-Eval is extensively evaluated on 20 popular and representative LLMs. The results confirm that S-Eval can better reflect and inform the safety risks of LLMs compared to existing benchmarks. We also explore the impacts of parameter scales, language environments, and decoding parameters on the evaluation, providing a systematic methodology for evaluating the safety of LLMs.

LLM-Powered Code Vulnerability Repair with Reinforcement Learning and Semantic Reward

In software development, the predominant emphasis on functionality often supersedes security concerns, a trend gaining momentum with AI-driven automation tools like GitHub Copilot. These tools significantly improve developers' efficiency in functional code development. Nevertheless, it remains a notable concern that such tools are also responsible for creating insecure code, predominantly because of pre-training on publicly available repositories with vulnerable code. Moreover, developers are called the "weakest link in the chain" since they have very minimal knowledge of code security. Although existing solutions provide a reasonable solution to vulnerable code, they must adequately describe and educate the developers on code security to ensure that the security issues are not repeated. Therefore we introduce a multipurpose code vulnerability analysis system SecRepair, powered by a large language model, CodeGen2 assisting the developer in identifying and generating fixed code along with a complete description of the vulnerability with a code comment. Our innovative methodology uses a reinforcement learning paradigm to generate code comments augmented by a semantic reward mechanism. Inspired by how humans fix code issues, we propose an instruction-based dataset suitable for vulnerability analysis with LLMs. We further identify zero-day and N-day vulnerabilities in 6 Open Source IoT Operating Systems on GitHub. Our findings underscore that incorporating reinforcement learning coupled with semantic reward augments our model's performance, thereby fortifying its capacity to address code vulnerabilities with improved efficacy.

CyberSecEval 2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models

Large language models (LLMs) introduce new security risks, but there are few comprehensive evaluation suites to measure and reduce these risks. We present BenchmarkName, a novel benchmark to quantify LLM security risks and capabilities. We introduce two new areas for testing: prompt injection and code interpreter abuse. We evaluated multiple state-of-the-art (SOTA) LLMs, including GPT-4, Mistral, Meta Llama 3 70B-Instruct, and Code Llama. Our results show that conditioning away risk of attack remains an unsolved problem; for example, all tested models showed between 26% and 41% successful prompt injection tests. We further introduce the safety-utility tradeoff: conditioning an LLM to reject unsafe prompts can cause the LLM to falsely reject answering benign prompts, which lowers utility. We propose quantifying this tradeoff using False Refusal Rate (FRR). As an illustration, we introduce a novel test set to quantify FRR for cyberattack helpfulness risk. We find many LLMs able to successfully comply with "borderline" benign requests while still rejecting most unsafe requests. Finally, we quantify the utility of LLMs for automating a core cybersecurity task, that of exploiting software vulnerabilities. This is important because the offensive capabilities of LLMs are of intense interest; we quantify this by creating novel test sets for four representative problems. We find that models with coding capabilities perform better than those without, but that further work is needed for LLMs to become proficient at exploit generation. Our code is open source and can be used to evaluate other LLMs.

RedCode: Risky Code Execution and Generation Benchmark for Code Agents

With the rapidly increasing capabilities and adoption of code agents for AI-assisted coding, safety concerns, such as generating or executing risky code, have become significant barriers to the real-world deployment of these agents. To provide comprehensive and practical evaluations on the safety of code agents, we propose RedCode, a benchmark for risky code execution and generation: (1) RedCode-Exec provides challenging prompts that could lead to risky code execution, aiming to evaluate code agents' ability to recognize and handle unsafe code. We provide a total of 4,050 risky test cases in Python and Bash tasks with diverse input formats including code snippets and natural text. They covers 25 types of critical vulnerabilities spanning 8 domains (e.g., websites, file systems). We provide Docker environments and design corresponding evaluation metrics to assess their execution results. (2) RedCode-Gen provides 160 prompts with function signatures and docstrings as input to assess whether code agents will follow instructions to generate harmful code or software. Our empirical findings, derived from evaluating three agent frameworks based on 19 LLMs, provide insights into code agents' vulnerabilities. For instance, evaluations on RedCode-Exec show that agents are more likely to reject executing risky operations on the operating system, but are less likely to reject executing technically buggy code, indicating high risks. Risky operations described in natural text lead to a lower rejection rate than those in code format. Additionally, evaluations on RedCode-Gen show that more capable base models and agents with stronger overall coding abilities, such as GPT4, tend to produce more sophisticated and effective harmful software. Our findings highlight the need for stringent safety evaluations for diverse code agents. Our dataset and code are available at https://github.com/AI-secure/RedCode.

Is Your Automated Software Engineer Trustworthy?

Large Language Models (LLMs) are being increasingly used in software engineering tasks, with an increased focus on bug report resolution over the past year. However, most proposed systems fail to properly handle uncertain or incorrect inputs and outputs. Existing LLM-based tools and coding agents respond to every issue and generate a patch for every case, even when the input is vague or their own output is incorrect. There are no mechanisms in place to abstain when confidence is low. This leads to unreliable behaviour, such as hallucinated code changes or responses based on vague issue reports. We introduce BouncerBench, a benchmark that evaluates whether LLM-based software agents can refuse to act when inputs are ill-defined or refuse to respond when their own outputs are likely to be incorrect. Unlike prior benchmarks that implicitly incentivize models to generate responses even when uncertain, BouncerBench aims to improve precision by targeting two overlooked failure points: (1) vague or underspecified issue descriptions in tickets and (2) logically or functionally incorrect code patches created by the system. It measures whether proposed systems can distinguish actionable issues from vague tickets and valid patches from untrustworthy ones. We also implement a basic input and output bouncer, evaluating how well current LLMs can abstain when needed. Our results show that most models fail to abstain from underspecified inputs or incorrect outputs. Hence, we conclude that there is significant room for improvement before LLMs can be trusted to make correct decisions and recommendations in real-world software engineering workflows. BouncerBench provides a first step toward evaluating and building more cautious, trustworthy code agents. The replication package, dataset, and leaderboard can be found at bouncerbench.com

CWEval: Outcome-driven Evaluation on Functionality and Security of LLM Code Generation

Large Language Models (LLMs) have significantly aided developers by generating or assisting in code writing, enhancing productivity across various tasks. While identifying incorrect code is often straightforward, detecting vulnerabilities in functionally correct code is more challenging, especially for developers with limited security knowledge, which poses considerable security risks of using LLM-generated code and underscores the need for robust evaluation benchmarks that assess both functional correctness and security. Current benchmarks like CyberSecEval and SecurityEval attempt to solve it but are hindered by unclear and impractical specifications, failing to assess both functionality and security accurately. To tackle these deficiencies, we introduce CWEval, a novel outcome-driven evaluation framework designed to enhance the evaluation of secure code generation by LLMs. This framework not only assesses code functionality but also its security simultaneously with high-quality task specifications and outcome-driven test oracles which provides high accuracy. Coupled with CWEval-bench, a multilingual, security-critical coding benchmark, CWEval provides a rigorous empirical security evaluation on LLM-generated code, overcoming previous benchmarks' shortcomings. Through our evaluations, CWEval reveals a notable portion of functional but insecure code produced by LLMs, and shows a serious inaccuracy of previous evaluations, ultimately contributing significantly to the field of secure code generation. We open-source our artifact at: https://github.com/Co1lin/CWEval .

AEGIS: Online Adaptive AI Content Safety Moderation with Ensemble of LLM Experts

As Large Language Models (LLMs) and generative AI become more widespread, the content safety risks associated with their use also increase. We find a notable deficiency in high-quality content safety datasets and benchmarks that comprehensively cover a wide range of critical safety areas. To address this, we define a broad content safety risk taxonomy, comprising 13 critical risk and 9 sparse risk categories. Additionally, we curate AEGISSAFETYDATASET, a new dataset of approximately 26, 000 human-LLM interaction instances, complete with human annotations adhering to the taxonomy. We plan to release this dataset to the community to further research and to help benchmark LLM models for safety. To demonstrate the effectiveness of the dataset, we instruction-tune multiple LLM-based safety models. We show that our models (named AEGISSAFETYEXPERTS), not only surpass or perform competitively with the state-of-the-art LLM-based safety models and general purpose LLMs, but also exhibit robustness across multiple jail-break attack categories. We also show how using AEGISSAFETYDATASET during the LLM alignment phase does not negatively impact the performance of the aligned models on MT Bench scores. Furthermore, we propose AEGIS, a novel application of a no-regret online adaptation framework with strong theoretical guarantees, to perform content moderation with an ensemble of LLM content safety experts in deployment

Rethinking Autonomy: Preventing Failures in AI-Driven Software Engineering

The integration of Large Language Models (LLMs) into software engineering has revolutionized code generation, enabling unprecedented productivity through promptware and autonomous AI agents. However, this transformation introduces significant risks, including insecure code generation, hallucinated outputs, irreversible actions, and a lack of transparency and accountability. Incidents like the Replit database deletion underscore the urgent need for robust safety and governance mechanisms. This paper comprehensively analyzes the inherent challenges of LLM-assisted code generation, such as vulnerability inheritance, overtrust, misinterpretation, and the absence of standardized validation and rollback protocols. To address these, we propose the SAFE-AI Framework, a holistic approach emphasizing Safety, Auditability, Feedback, and Explainability. The framework integrates guardrails, sandboxing, runtime verification, risk-aware logging, human-in-the-loop systems, and explainable AI techniques to mitigate risks while fostering trust and compliance. We introduce a novel taxonomy of AI behaviors categorizing suggestive, generative, autonomous, and destructive actions to guide risk assessment and oversight. Additionally, we identify open problems, including the lack of standardized benchmarks for code specific hallucinations and autonomy levels, and propose future research directions for hybrid verification, semantic guardrails, and proactive governance tools. Through detailed comparisons of autonomy control, prompt engineering, explainability, and governance frameworks, this paper provides a roadmap for responsible AI integration in software engineering, aligning with emerging regulations like the EU AI Act and Canada's AIDA to ensure safe, transparent, and accountable AI-driven development.

Playing the Fool: Jailbreaking LLMs and Multimodal LLMs with Out-of-Distribution Strategy

Despite the remarkable versatility of Large Language Models (LLMs) and Multimodal LLMs (MLLMs) to generalize across both language and vision tasks, LLMs and MLLMs have shown vulnerability to jailbreaking, generating textual outputs that undermine safety, ethical, and bias standards when exposed to harmful or sensitive inputs. With the recent advancement of safety alignment via preference-tuning from human feedback, LLMs and MLLMs have been equipped with safety guardrails to yield safe, ethical, and fair responses with regard to harmful inputs. However, despite the significance of safety alignment, research on the vulnerabilities remains largely underexplored. In this paper, we investigate the unexplored vulnerability of the safety alignment, examining its ability to consistently provide safety guarantees for out-of-distribution(OOD)-ifying harmful inputs that may fall outside the aligned data distribution. Our key observation is that OOD-ifying the vanilla harmful inputs highly increases the uncertainty of the model to discern the malicious intent within the input, leading to a higher chance of being jailbroken. Exploiting this vulnerability, we propose JOOD, a new Jailbreak framework via OOD-ifying inputs beyond the safety alignment. We explore various off-the-shelf visual and textual transformation techniques for OOD-ifying the harmful inputs. Notably, we observe that even simple mixing-based techniques such as image mixup prove highly effective in increasing the uncertainty of the model, thereby facilitating the bypass of the safety alignment. Experiments across diverse jailbreak scenarios demonstrate that JOOD effectively jailbreaks recent proprietary LLMs and MLLMs such as GPT-4 and o1 with high attack success rate, which previous attack approaches have consistently struggled to jailbreak. Code is available at https://github.com/naver-ai/JOOD.

CVE-driven Attack Technique Prediction with Semantic Information Extraction and a Domain-specific Language Model

This paper addresses a critical challenge in cybersecurity: the gap between vulnerability information represented by Common Vulnerabilities and Exposures (CVEs) and the resulting cyberattack actions. CVEs provide insights into vulnerabilities, but often lack details on potential threat actions (tactics, techniques, and procedures, or TTPs) within the ATT&CK framework. This gap hinders accurate CVE categorization and proactive countermeasure initiation. The paper introduces the TTPpredictor tool, which uses innovative techniques to analyze CVE descriptions and infer plausible TTP attacks resulting from CVE exploitation. TTPpredictor overcomes challenges posed by limited labeled data and semantic disparities between CVE and TTP descriptions. It initially extracts threat actions from unstructured cyber threat reports using Semantic Role Labeling (SRL) techniques. These actions, along with their contextual attributes, are correlated with MITRE's attack functionality classes. This automated correlation facilitates the creation of labeled data, essential for categorizing novel threat actions into threat functionality classes and TTPs. The paper presents an empirical assessment, demonstrating TTPpredictor's effectiveness with accuracy rates of approximately 98% and F1-scores ranging from 95% to 98% in precise CVE classification to ATT&CK techniques. TTPpredictor outperforms state-of-the-art language model tools like ChatGPT. Overall, this paper offers a robust solution for linking CVEs to potential attack techniques, enhancing cybersecurity practitioners' ability to proactively identify and mitigate threats.

Cross-Modality Jailbreak and Mismatched Attacks on Medical Multimodal Large Language Models

Security concerns related to Large Language Models (LLMs) have been extensively explored, yet the safety implications for Multimodal Large Language Models (MLLMs), particularly in medical contexts (MedMLLMs), remain insufficiently studied. This paper delves into the underexplored security vulnerabilities of MedMLLMs, especially when deployed in clinical environments where the accuracy and relevance of question-and-answer interactions are critically tested against complex medical challenges. By combining existing clinical medical data with atypical natural phenomena, we redefine two types of attacks: mismatched malicious attack (2M-attack) and optimized mismatched malicious attack (O2M-attack). Using our own constructed voluminous 3MAD dataset, which covers a wide range of medical image modalities and harmful medical scenarios, we conduct a comprehensive analysis and propose the MCM optimization method, which significantly enhances the attack success rate on MedMLLMs. Evaluations with this dataset and novel attack methods, including white-box attacks on LLaVA-Med and transfer attacks on four other state-of-the-art models, indicate that even MedMLLMs designed with enhanced security features are vulnerable to security breaches. Our work underscores the urgent need for a concerted effort to implement robust security measures and enhance the safety and efficacy of open-source MedMLLMs, particularly given the potential severity of jailbreak attacks and other malicious or clinically significant exploits in medical settings. For further research and replication, anonymous access to our code is available at https://github.com/dirtycomputer/O2M_attack. Warning: Medical large model jailbreaking may generate content that includes unverified diagnoses and treatment recommendations. Always consult professional medical advice.

SecCodePLT: A Unified Platform for Evaluating the Security of Code GenAI

Existing works have established multiple benchmarks to highlight the security risks associated with Code GenAI. These risks are primarily reflected in two areas: a model potential to generate insecure code (insecure coding) and its utility in cyberattacks (cyberattack helpfulness). While these benchmarks have made significant strides, there remain opportunities for further improvement. For instance, many current benchmarks tend to focus more on a model ability to provide attack suggestions rather than its capacity to generate executable attacks. Additionally, most benchmarks rely heavily on static evaluation metrics, which may not be as precise as dynamic metrics such as passing test cases. Conversely, expert-verified benchmarks, while offering high-quality data, often operate at a smaller scale. To address these gaps, we develop SecCodePLT, a unified and comprehensive evaluation platform for code GenAIs' risks. For insecure code, we introduce a new methodology for data creation that combines experts with automatic generation. Our methodology ensures the data quality while enabling large-scale generation. We also associate samples with test cases to conduct code-related dynamic evaluation. For cyberattack helpfulness, we set up a real environment and construct samples to prompt a model to generate actual attacks, along with dynamic metrics in our environment. We conduct extensive experiments and show that SecCodePLT outperforms the state-of-the-art (SOTA) benchmark CyberSecEval in security relevance. Furthermore, it better identifies the security risks of SOTA models in insecure coding and cyberattack helpfulness. Finally, we apply SecCodePLT to the SOTA code agent, Cursor, and, for the first time, identify non-trivial security risks in this advanced coding agent.

WildTeaming at Scale: From In-the-Wild Jailbreaks to (Adversarially) Safer Language Models

We introduce WildTeaming, an automatic LLM safety red-teaming framework that mines in-the-wild user-chatbot interactions to discover 5.7K unique clusters of novel jailbreak tactics, and then composes multiple tactics for systematic exploration of novel jailbreaks. Compared to prior work that performed red-teaming via recruited human workers, gradient-based optimization, or iterative revision with LLMs, our work investigates jailbreaks from chatbot users who were not specifically instructed to break the system. WildTeaming reveals previously unidentified vulnerabilities of frontier LLMs, resulting in up to 4.6x more diverse and successful adversarial attacks compared to state-of-the-art jailbreak methods. While many datasets exist for jailbreak evaluation, very few open-source datasets exist for jailbreak training, as safety training data has been closed even when model weights are open. With WildTeaming we create WildJailbreak, a large-scale open-source synthetic safety dataset with 262K vanilla (direct request) and adversarial (complex jailbreak) prompt-response pairs. To mitigate exaggerated safety behaviors, WildJailbreak provides two contrastive types of queries: 1) harmful queries (vanilla & adversarial) and 2) benign queries that resemble harmful queries in form but contain no harm. As WildJailbreak considerably upgrades the quality and scale of existing safety resources, it uniquely enables us to examine the scaling effects of data and the interplay of data properties and model capabilities during safety training. Through extensive experiments, we identify the training properties that enable an ideal balance of safety behaviors: appropriate safeguarding without over-refusal, effective handling of vanilla and adversarial queries, and minimal, if any, decrease in general capabilities. All components of WildJailbeak contribute to achieving balanced safety behaviors of models.

PhyX: Does Your Model Have the "Wits" for Physical Reasoning?

Existing benchmarks fail to capture a crucial aspect of intelligence: physical reasoning, the integrated ability to combine domain knowledge, symbolic reasoning, and understanding of real-world constraints. To address this gap, we introduce PhyX: the first large-scale benchmark designed to assess models capacity for physics-grounded reasoning in visual scenarios. PhyX includes 3K meticulously curated multimodal questions spanning 6 reasoning types across 25 sub-domains and 6 core physics domains: thermodynamics, electromagnetism, mechanics, modern physics, optics, and wave\&acoustics. In our comprehensive evaluation, even state-of-the-art models struggle significantly with physical reasoning. GPT-4o, Claude3.7-Sonnet, and GPT-o4-mini achieve only 32.5\%, 42.2\%, and 45.8\% accuracy respectively-performance gaps exceeding 29\% compared to human experts. Our analysis exposes critical limitations in current models: over-reliance on memorized disciplinary knowledge, excessive dependence on mathematical formulations, and surface-level visual pattern matching rather than genuine physical understanding. We provide in-depth analysis through fine-grained statistics, detailed case studies, and multiple evaluation paradigms to thoroughly examine physical reasoning capabilities. To ensure reproducibility, we implement a compatible evaluation protocol based on widely-used toolkits such as VLMEvalKit, enabling one-click evaluation.

Current state of LLM Risks and AI Guardrails

Large language models (LLMs) have become increasingly sophisticated, leading to widespread deployment in sensitive applications where safety and reliability are paramount. However, LLMs have inherent risks accompanying them, including bias, potential for unsafe actions, dataset poisoning, lack of explainability, hallucinations, and non-reproducibility. These risks necessitate the development of "guardrails" to align LLMs with desired behaviors and mitigate potential harm. This work explores the risks associated with deploying LLMs and evaluates current approaches to implementing guardrails and model alignment techniques. We examine intrinsic and extrinsic bias evaluation methods and discuss the importance of fairness metrics for responsible AI development. The safety and reliability of agentic LLMs (those capable of real-world actions) are explored, emphasizing the need for testability, fail-safes, and situational awareness. Technical strategies for securing LLMs are presented, including a layered protection model operating at external, secondary, and internal levels. System prompts, Retrieval-Augmented Generation (RAG) architectures, and techniques to minimize bias and protect privacy are highlighted. Effective guardrail design requires a deep understanding of the LLM's intended use case, relevant regulations, and ethical considerations. Striking a balance between competing requirements, such as accuracy and privacy, remains an ongoing challenge. This work underscores the importance of continuous research and development to ensure the safe and responsible use of LLMs in real-world applications.

Demystifying RCE Vulnerabilities in LLM-Integrated Apps

LLMs show promise in transforming software development, with a growing interest in integrating them into more intelligent apps. Frameworks like LangChain aid LLM-integrated app development, offering code execution utility/APIs for custom actions. However, these capabilities theoretically introduce Remote Code Execution (RCE) vulnerabilities, enabling remote code execution through prompt injections. No prior research systematically investigates these frameworks' RCE vulnerabilities or their impact on applications and exploitation consequences. Therefore, there is a huge research gap in this field. In this study, we propose LLMSmith to detect, validate and exploit the RCE vulnerabilities in LLM-integrated frameworks and apps. To achieve this goal, we develop two novel techniques, including 1) a lightweight static analysis to examine LLM integration mechanisms, and construct call chains to identify RCE vulnerabilities in frameworks; 2) a systematical prompt-based exploitation method to verify and exploit the found vulnerabilities in LLM-integrated apps. This technique involves various strategies to control LLM outputs, trigger RCE vulnerabilities and launch subsequent attacks. Our research has uncovered a total of 20 vulnerabilities in 11 LLM-integrated frameworks, comprising 19 RCE vulnerabilities and 1 arbitrary file read/write vulnerability. Of these, 17 have been confirmed by the framework developers, with 11 vulnerabilities being assigned CVE IDs. For the 51 apps potentially affected by RCE, we successfully executed attacks on 17 apps, 16 of which are vulnerable to RCE and 1 to SQL injection. Furthermore, we conduct a comprehensive analysis of these vulnerabilities and construct practical attacks to demonstrate the hazards in reality. Last, we propose several mitigation measures for both framework and app developers to counteract such attacks.

Datasheets Aren't Enough: DataRubrics for Automated Quality Metrics and Accountability

High-quality datasets are fundamental to training and evaluating machine learning models, yet their creation-especially with accurate human annotations-remains a significant challenge. Many dataset paper submissions lack originality, diversity, or rigorous quality control, and these shortcomings are often overlooked during peer review. Submissions also frequently omit essential details about dataset construction and properties. While existing tools such as datasheets aim to promote transparency, they are largely descriptive and do not provide standardized, measurable methods for evaluating data quality. Similarly, metadata requirements at conferences promote accountability but are inconsistently enforced. To address these limitations, this position paper advocates for the integration of systematic, rubric-based evaluation metrics into the dataset review process-particularly as submission volumes continue to grow. We also explore scalable, cost-effective methods for synthetic data generation, including dedicated tools and LLM-as-a-judge approaches, to support more efficient evaluation. As a call to action, we introduce DataRubrics, a structured framework for assessing the quality of both human- and model-generated datasets. Leveraging recent advances in LLM-based evaluation, DataRubrics offers a reproducible, scalable, and actionable solution for dataset quality assessment, enabling both authors and reviewers to uphold higher standards in data-centric research. We also release code to support reproducibility of LLM-based evaluations at https://github.com/datarubrics/datarubrics.

Predicting Maintenance Cessation of Open Source Software Repositories with An Integrated Feature Framework

The maintenance risks of open source software (OSS) projects pose significant threats to the quality, security, and resilience of modern software supply chains. While prior research has proposed diverse approaches for predicting OSS maintenance risk -- leveraging signals ranging from surface features (e.g., stars, commits) to social network analyses and behavioral patterns -- existing methods often suffer from ambiguous operational definitions, limited interpretability, and datasets of insufficient scale or generalizability. In this work, we introduce ``maintenance cessation'', grounded in both explicit archival status and rigorous semantic analysis of project documentation. Building on this foundation, we curate a large-scale, longitudinal dataset of 115,466 GitHub repositories -- encompassing 57,733 confirmed cessation events -- complemented by comprehensive, timeline-based behavioral features. We propose an integrated, multi-perspective feature framework for predicting maintenance cessation, systematically combining user-centric features, maintainer-centric features and project evolution features. AFT survival analysis demonstrates a high C-index (0.846), substantially outperforming models relying only on surface features. Feature ablation and SHAP analysis further confirm the effectiveness and interpretability of our approach. Finally, we demonstrate real-world applicability by deploying a GBSA classifier in the openEuler ecosystem for proactive package risk screening. Our work establishes a scalable, interpretable foundation for maintenance-risk prediction, enabling reproducible risk management across large-scale open source ecosystems.

An In-kernel Forensics Engine for Investigating Evasive Attacks

Over the years, adversarial attempts against critical services have become more effective and sophisticated in launching low-profile attacks. This trend has always been concerning. However, an even more alarming trend is the increasing difficulty of collecting relevant evidence about these attacks and the involved threat actors in the early stages before significant damage is done. This issue puts defenders at a significant disadvantage, as it becomes exceedingly difficult to understand the attack details and formulate an appropriate response. Developing robust forensics tools to collect evidence about modern threats has never been easy. One main challenge is to provide a robust trade-off between achieving sufficient visibility while leaving minimal detectable artifacts. This paper will introduce LASE, an open-source Low-Artifact Forensics Engine to perform threat analysis and forensics in Windows operating system. LASE augments current analysis tools by providing detailed, system-wide monitoring capabilities while minimizing detectable artifacts. We designed multiple deployment scenarios, showing LASE's potential in evidence gathering and threat reasoning in a real-world setting. By making LASE and its execution trace data available to the broader research community, this work encourages further exploration in the field by reducing the engineering costs for threat analysis and building a longitudinal behavioral analysis catalog for diverse security domains.

A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification

In this paper we present a novel solution that combines the capabilities of Large Language Models (LLMs) with Formal Verification strategies to verify and automatically repair software vulnerabilities. Initially, we employ Bounded Model Checking (BMC) to locate the software vulnerability and derive a counterexample. The counterexample provides evidence that the system behaves incorrectly or contains a vulnerability. The counterexample that has been detected, along with the source code, are provided to the LLM engine. Our approach involves establishing a specialized prompt language for conducting code debugging and generation to understand the vulnerability's root cause and repair the code. Finally, we use BMC to verify the corrected version of the code generated by the LLM. As a proof of concept, we create ESBMC-AI based on the Efficient SMT-based Context-Bounded Model Checker (ESBMC) and a pre-trained Transformer model, specifically gpt-3.5-turbo, to detect and fix errors in C programs. Our experimentation involved generating a dataset comprising 1000 C code samples, each consisting of 20 to 50 lines of code. Notably, our proposed method achieved an impressive success rate of up to 80% in repairing vulnerable code encompassing buffer overflow and pointer dereference failures. We assert that this automated approach can effectively incorporate into the software development lifecycle's continuous integration and deployment (CI/CD) process.

ProphetFuzz: Fully Automated Prediction and Fuzzing of High-Risk Option Combinations with Only Documentation via Large Language Model

Vulnerabilities related to option combinations pose a significant challenge in software security testing due to their vast search space. Previous research primarily addressed this challenge through mutation or filtering techniques, which inefficiently treated all option combinations as having equal potential for vulnerabilities, thus wasting considerable time on non-vulnerable targets and resulting in low testing efficiency. In this paper, we utilize carefully designed prompt engineering to drive the large language model (LLM) to predict high-risk option combinations (i.e., more likely to contain vulnerabilities) and perform fuzz testing automatically without human intervention. We developed a tool called ProphetFuzz and evaluated it on a dataset comprising 52 programs collected from three related studies. The entire experiment consumed 10.44 CPU years. ProphetFuzz successfully predicted 1748 high-risk option combinations at an average cost of only \$8.69 per program. Results show that after 72 hours of fuzzing, ProphetFuzz discovered 364 unique vulnerabilities associated with 12.30\% of the predicted high-risk option combinations, which was 32.85\% higher than that found by state-of-the-art in the same timeframe. Additionally, using ProphetFuzz, we conducted persistent fuzzing on the latest versions of these programs, uncovering 140 vulnerabilities, with 93 confirmed by developers and 21 awarded CVE numbers.

Adaptive Deployment of Untrusted LLMs Reduces Distributed Threats

As large language models (LLMs) become increasingly capable, it is prudent to assess whether safety measures remain effective even if LLMs intentionally try to bypass them. Previous work introduced control evaluations, an adversarial framework for testing deployment strategies of untrusted models (i.e., models which might be trying to bypass safety measures). While prior work treats a single failure as unacceptable, we perform control evaluations in a "distributed threat setting" -- a setting where no single action is catastrophic and no single action provides overwhelming evidence of misalignment. We approach this problem with a two-level deployment framework that uses an adaptive macro-protocol to choose between micro-protocols. Micro-protocols operate on a single task, using a less capable, but extensively tested (trusted) model to harness and monitor the untrusted model. Meanwhile, the macro-protocol maintains an adaptive credence on the untrusted model's alignment based on its past actions, using it to pick between safer and riskier micro-protocols. We evaluate our method in a code generation testbed where a red team attempts to generate subtly backdoored code with an LLM whose deployment is safeguarded by a blue team. We plot Pareto frontiers of safety (# of non-backdoored solutions) and usefulness (# of correct solutions). At a given level of usefulness, our adaptive deployment strategy reduces the number of backdoors by 80% compared to non-adaptive baselines.

DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified Robustness

Machine Learning (ML) models have been utilized for malware detection for over two decades. Consequently, this ignited an ongoing arms race between malware authors and antivirus systems, compelling researchers to propose defenses for malware-detection models against evasion attacks. However, most if not all existing defenses against evasion attacks suffer from sizable performance degradation and/or can defend against only specific attacks, which makes them less practical in real-world settings. In this work, we develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection. Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables. After showing how DRSM is theoretically robust against attacks with contiguous adversarial bytes, we verify its performance and certified robustness experimentally, where we observe only marginal accuracy drops as the cost of robustness. To our knowledge, we are the first to offer certified robustness in the realm of static detection of malware executables. More surprisingly, through evaluating DRSM against 9 empirical attacks of different types, we observe that the proposed defense is empirically robust to some extent against a diverse set of attacks, some of which even fall out of the scope of its original threat model. In addition, we collected 15.5K recent benign raw executables from diverse sources, which will be made public as a dataset called PACE (Publicly Accessible Collection(s) of Executables) to alleviate the scarcity of publicly available benign datasets for studying malware detection and provide future research with more representative data of the time.

D2A: A Dataset Built for AI-Based Vulnerability Detection Methods Using Differential Analysis

Static analysis tools are widely used for vulnerability detection as they understand programs with complex behavior and millions of lines of code. Despite their popularity, static analysis tools are known to generate an excess of false positives. The recent ability of Machine Learning models to understand programming languages opens new possibilities when applied to static analysis. However, existing datasets to train models for vulnerability identification suffer from multiple limitations such as limited bug context, limited size, and synthetic and unrealistic source code. We propose D2A, a differential analysis based approach to label issues reported by static analysis tools. The D2A dataset is built by analyzing version pairs from multiple open source projects. From each project, we select bug fixing commits and we run static analysis on the versions before and after such commits. If some issues detected in a before-commit version disappear in the corresponding after-commit version, they are very likely to be real bugs that got fixed by the commit. We use D2A to generate a large labeled dataset to train models for vulnerability identification. We show that the dataset can be used to build a classifier to identify possible false alarms among the issues reported by static analysis, hence helping developers prioritize and investigate potential true positives first.

Smart-LLaMA-DPO: Reinforced Large Language Model for Explainable Smart Contract Vulnerability Detection

Smart contract vulnerability detection remains a major challenge in blockchain security. Existing vulnerability detection methods face two main issues: (1) Existing datasets lack comprehensive coverage and high-quality explanations for preference learning. (2) Large language models (LLMs) often struggle with accurately interpreting specific concepts in smart contract security. Empirical analysis shows that even after continual pre-training (CPT) and supervised fine-tuning (SFT), LLMs may misinterpret the execution order of state changes, resulting in incorrect explanations despite making correct detection decisions. To address these challenges, we propose Smart-LLaMA-DPO based on LLaMA-3.1-8B. We construct a comprehensive dataset covering four major vulnerability types and machine-unauditable vulnerabilities, including precise labels, explanations, and locations for SFT, as well as high-quality and low-quality output pairs for Direct Preference Optimization (DPO). Second, we perform CPT using large-scale smart contract to enhance the LLM's understanding of specific security practices in smart contracts. Futhermore, we conduct SFT with our comprehensive dataset. Finally, we apply DPO, leveraging human feedback and a specially designed loss function that increases the probability of preferred explanations while reducing the likelihood of non-preferred outputs. We evaluate Smart-LLaMA-DPO on four major vulnerability types: reentrancy, timestamp dependence, integer overflow/underflow, and delegatecall, as well as machine-unauditable vulnerabilities. Our method significantly outperforms state-of-the-art baselines, with average improvements of 10.43% in F1 score and 7.87% in accuracy. Moreover, both LLM evaluation and human evaluation confirm that our method generates more correct, thorough, and clear explanations.

Code Structure-Aware through Line-level Semantic Learning for Code Vulnerability Detection

Different from the flow semantics of natural languages, programming languages are inherently rigid in structure and grammar. Existing fine-tuning methodologies for code vulnerability detection generally treat code as long text sequences, stripping away structural elements such as newlines ('/n') and whitespace. However, this approach inadvertently results in the loss of crucial structural information, diminishing the distinct characteristics of code and impairing the accuracy of vulnerability detection. To address these challenges, we propose a novel network architecture method based on pre-trained code models, which incorporates structural information awareness. We propose an enhanced code text processing workflow that retains structural elements prior to modeling. This refinement allows the model to retain and exploit line-level structural information and semantic information during the modeling process. Furthermore, we introduce a new network architecture, the Code Structure-Aware Network through Line-level Semantic Learning (CSLS), which integrates three key components: global vulnerability awareness, line-structural awareness, and sensitive-line awareness. We have conducted comprehensive experiments using vulnerability detection datasets from real-world projects. Extensive experiments were conducted on vulnerability detection datasets derived from real-world projects. The results demonstrate that our new code pre-processing flow significantly improves existing baselines (e.g., a 3\% accuracy improvement on the Devign dataset when applied to popular models such as CoderBert and UniXcoder). The proposed network architecture also demonstrates superior accuracy in detecting vulnerabilities, surpassing newly established benchmarks. These findings underscore the importance of structural information in enhancing the efficacy of code vulnerability detection models.

T2ISafety: Benchmark for Assessing Fairness, Toxicity, and Privacy in Image Generation

Text-to-image (T2I) models have rapidly advanced, enabling the generation of high-quality images from text prompts across various domains. However, these models present notable safety concerns, including the risk of generating harmful, biased, or private content. Current research on assessing T2I safety remains in its early stages. While some efforts have been made to evaluate models on specific safety dimensions, many critical risks remain unexplored. To address this gap, we introduce T2ISafety, a safety benchmark that evaluates T2I models across three key domains: toxicity, fairness, and bias. We build a detailed hierarchy of 12 tasks and 44 categories based on these three domains, and meticulously collect 70K corresponding prompts. Based on this taxonomy and prompt set, we build a large-scale T2I dataset with 68K manually annotated images and train an evaluator capable of detecting critical risks that previous work has failed to identify, including risks that even ultra-large proprietary models like GPTs cannot correctly detect. We evaluate 12 prominent diffusion models on T2ISafety and reveal several concerns including persistent issues with racial fairness, a tendency to generate toxic content, and significant variation in privacy protection across the models, even with defense methods like concept erasing. Data and evaluator are released under https://github.com/adwardlee/t2i_safety.

SciSafeEval: A Comprehensive Benchmark for Safety Alignment of Large Language Models in Scientific Tasks

Large language models (LLMs) have had a transformative impact on a variety of scientific tasks across disciplines such as biology, chemistry, medicine, and physics. However, ensuring the safety alignment of these models in scientific research remains an underexplored area, with existing benchmarks primarily focus on textual content and overlooking key scientific representations such as molecular, protein, and genomic languages. Moreover, the safety mechanisms of LLMs in scientific tasks are insufficiently studied. To address these limitations, we introduce SciSafeEval, a comprehensive benchmark designed to evaluate the safety alignment of LLMs across a range of scientific tasks. SciSafeEval spans multiple scientific languages - including textual, molecular, protein, and genomic - and covers a wide range of scientific domains. We evaluate LLMs in zero-shot, few-shot and chain-of-thought settings, and introduce a 'jailbreak' enhancement feature that challenges LLMs equipped with safety guardrails, rigorously testing their defenses against malicious intention. Our benchmark surpasses existing safety datasets in both scale and scope, providing a robust platform for assessing the safety and performance of LLMs in scientific contexts. This work aims to facilitate the responsible development and deployment of LLMs, promoting alignment with safety and ethical standards in scientific research.

Hallucinating AI Hijacking Attack: Large Language Models and Malicious Code Recommenders

The research builds and evaluates the adversarial potential to introduce copied code or hallucinated AI recommendations for malicious code in popular code repositories. While foundational large language models (LLMs) from OpenAI, Google, and Anthropic guard against both harmful behaviors and toxic strings, previous work on math solutions that embed harmful prompts demonstrate that the guardrails may differ between expert contexts. These loopholes would appear in mixture of expert's models when the context of the question changes and may offer fewer malicious training examples to filter toxic comments or recommended offensive actions. The present work demonstrates that foundational models may refuse to propose destructive actions correctly when prompted overtly but may unfortunately drop their guard when presented with a sudden change of context, like solving a computer programming challenge. We show empirical examples with trojan-hosting repositories like GitHub, NPM, NuGet, and popular content delivery networks (CDN) like jsDelivr which amplify the attack surface. In the LLM's directives to be helpful, example recommendations propose application programming interface (API) endpoints which a determined domain-squatter could acquire and setup attack mobile infrastructure that triggers from the naively copied code. We compare this attack to previous work on context-shifting and contrast the attack surface as a novel version of "living off the land" attacks in the malware literature. In the latter case, foundational language models can hijack otherwise innocent user prompts to recommend actions that violate their owners' safety policies when posed directly without the accompanying coding support request.

CopyrightMeter: Revisiting Copyright Protection in Text-to-image Models

Text-to-image diffusion models have emerged as powerful tools for generating high-quality images from textual descriptions. However, their increasing popularity has raised significant copyright concerns, as these models can be misused to reproduce copyrighted content without authorization. In response, recent studies have proposed various copyright protection methods, including adversarial perturbation, concept erasure, and watermarking techniques. However, their effectiveness and robustness against advanced attacks remain largely unexplored. Moreover, the lack of unified evaluation frameworks has hindered systematic comparison and fair assessment of different approaches. To bridge this gap, we systematize existing copyright protection methods and attacks, providing a unified taxonomy of their design spaces. We then develop CopyrightMeter, a unified evaluation framework that incorporates 17 state-of-the-art protections and 16 representative attacks. Leveraging CopyrightMeter, we comprehensively evaluate protection methods across multiple dimensions, thereby uncovering how different design choices impact fidelity, efficacy, and resilience under attacks. Our analysis reveals several key findings: (i) most protections (16/17) are not resilient against attacks; (ii) the "best" protection varies depending on the target priority; (iii) more advanced attacks significantly promote the upgrading of protections. These insights provide concrete guidance for developing more robust protection methods, while its unified evaluation protocol establishes a standard benchmark for future copyright protection research in text-to-image generation.

Paper Summary Attack: Jailbreaking LLMs through LLM Safety Papers

The safety of large language models (LLMs) has garnered significant research attention. In this paper, we argue that previous empirical studies demonstrate LLMs exhibit a propensity to trust information from authoritative sources, such as academic papers, implying new possible vulnerabilities. To verify this possibility, a preliminary analysis is designed to illustrate our two findings. Based on this insight, a novel jailbreaking method, Paper Summary Attack (PSA), is proposed. It systematically synthesizes content from either attack-focused or defense-focused LLM safety paper to construct an adversarial prompt template, while strategically infilling harmful query as adversarial payloads within predefined subsections. Extensive experiments show significant vulnerabilities not only in base LLMs, but also in state-of-the-art reasoning model like Deepseek-R1. PSA achieves a 97\% attack success rate (ASR) on well-aligned models like Claude3.5-Sonnet and an even higher 98\% ASR on Deepseek-R1. More intriguingly, our work has further revealed diametrically opposed vulnerability bias across different base models, and even between different versions of the same model, when exposed to either attack-focused or defense-focused papers. This phenomenon potentially indicates future research clues for both adversarial methodologies and safety alignment.Code is available at https://github.com/233liang/Paper-Summary-Attack

Helping LLMs Improve Code Generation Using Feedback from Testing and Static Analysis

Large Language Models (LLMs) are one of the most promising developments in the field of artificial intelligence, and the software engineering community has readily noticed their potential role in the software development life-cycle. Developers routinely ask LLMs to generate code snippets, increasing productivity but also potentially introducing ownership, privacy, correctness, and security issues. Previous work highlighted how code generated by mainstream commercial LLMs is often not safe, containing vulnerabilities, bugs, and code smells. In this paper, we present a framework that leverages testing and static analysis to assess the quality, and guide the self-improvement, of code generated by general-purpose, open-source LLMs. First, we ask LLMs to generate C code to solve a number of programming tasks. Then we employ ground-truth tests to assess the (in)correctness of the generated code, and a static analysis tool to detect potential safety vulnerabilities. Next, we assess the models ability to evaluate the generated code, by asking them to detect errors and vulnerabilities. Finally, we test the models ability to fix the generated code, providing the reports produced during the static analysis and incorrectness evaluation phases as feedback. Our results show that models often produce incorrect code, and that the generated code can include safety issues. Moreover, they perform very poorly at detecting either issue. On the positive side, we observe a substantial ability to fix flawed code when provided with information about failed tests or potential vulnerabilities, indicating a promising avenue for improving the safety of LLM-based code generation tools.

Not what you've signed up for: Compromising Real-World LLM-Integrated Applications with Indirect Prompt Injection

Large Language Models (LLMs) are increasingly being integrated into various applications. The functionalities of recent LLMs can be flexibly modulated via natural language prompts. This renders them susceptible to targeted adversarial prompting, e.g., Prompt Injection (PI) attacks enable attackers to override original instructions and employed controls. So far, it was assumed that the user is directly prompting the LLM. But, what if it is not the user prompting? We argue that LLM-Integrated Applications blur the line between data and instructions. We reveal new attack vectors, using Indirect Prompt Injection, that enable adversaries to remotely (without a direct interface) exploit LLM-integrated applications by strategically injecting prompts into data likely to be retrieved. We derive a comprehensive taxonomy from a computer security perspective to systematically investigate impacts and vulnerabilities, including data theft, worming, information ecosystem contamination, and other novel security risks. We demonstrate our attacks' practical viability against both real-world systems, such as Bing's GPT-4 powered Chat and code-completion engines, and synthetic applications built on GPT-4. We show how processing retrieved prompts can act as arbitrary code execution, manipulate the application's functionality, and control how and if other APIs are called. Despite the increasing integration and reliance on LLMs, effective mitigations of these emerging threats are currently lacking. By raising awareness of these vulnerabilities and providing key insights into their implications, we aim to promote the safe and responsible deployment of these powerful models and the development of robust defenses that protect users and systems from potential attacks.

Transformer-based Vulnerability Detection in Code at EditTime: Zero-shot, Few-shot, or Fine-tuning?

Software vulnerabilities bear enterprises significant costs. Despite extensive efforts in research and development of software vulnerability detection methods, uncaught vulnerabilities continue to put software owners and users at risk. Many current vulnerability detection methods require that code snippets can compile and build before attempting detection. This, unfortunately, introduces a long latency between the time a vulnerability is injected to the time it is removed, which can substantially increases the cost of fixing a vulnerability. We recognize that the current advances in machine learning can be used to detect vulnerable code patterns on syntactically incomplete code snippets as the developer is writing the code at EditTime. In this paper we present a practical system that leverages deep learning on a large-scale data set of vulnerable code patterns to learn complex manifestations of more than 250 vulnerability types and detect vulnerable code patterns at EditTime. We discuss zero-shot, few-shot, and fine-tuning approaches on state of the art pre-trained Large Language Models (LLMs). We show that in comparison with state of the art vulnerability detection models our approach improves the state of the art by 10%. We also evaluate our approach to detect vulnerability in auto-generated code by code LLMs. Evaluation on a benchmark of high-risk code scenarios shows a reduction of up to 90% vulnerability reduction.

Quo Vadis: Hybrid Machine Learning Meta-Model based on Contextual and Behavioral Malware Representations

We propose a hybrid machine learning architecture that simultaneously employs multiple deep learning models analyzing contextual and behavioral characteristics of Windows portable executable, producing a final prediction based on a decision from the meta-model. The detection heuristic in contemporary machine learning Windows malware classifiers is typically based on the static properties of the sample since dynamic analysis through virtualization is challenging for vast quantities of samples. To surpass this limitation, we employ a Windows kernel emulation that allows the acquisition of behavioral patterns across large corpora with minimal temporal and computational costs. We partner with a security vendor for a collection of more than 100k int-the-wild samples that resemble the contemporary threat landscape, containing raw PE files and filepaths of applications at the moment of execution. The acquired dataset is at least ten folds larger than reported in related works on behavioral malware analysis. Files in the training dataset are labeled by a professional threat intelligence team, utilizing manual and automated reverse engineering tools. We estimate the hybrid classifier's operational utility by collecting an out-of-sample test set three months later from the acquisition of the training set. We report an improved detection rate, above the capabilities of the current state-of-the-art model, especially under low false-positive requirements. Additionally, we uncover a meta-model's ability to identify malicious activity in validation and test sets even if none of the individual models express enough confidence to mark the sample as malevolent. We conclude that the meta-model can learn patterns typical to malicious samples from representation combinations produced by different analysis techniques. We publicly release pre-trained models and anonymized dataset of emulation reports.

Fidelity and Privacy of Synthetic Medical Data

The digitization of medical records ushered in a new era of big data to clinical science, and with it the possibility that data could be shared, to multiply insights beyond what investigators could abstract from paper records. The need to share individual-level medical data to accelerate innovation in precision medicine continues to grow, and has never been more urgent, as scientists grapple with the COVID-19 pandemic. However, enthusiasm for the use of big data has been tempered by a fully appropriate concern for patient autonomy and privacy. That is, the ability to extract private or confidential information about an individual, in practice, renders it difficult to share data, since significant infrastructure and data governance must be established before data can be shared. Although HIPAA provided de-identification as an approved mechanism for data sharing, linkage attacks were identified as a major vulnerability. A variety of mechanisms have been established to avoid leaking private information, such as field suppression or abstraction, strictly limiting the amount of information that can be shared, or employing mathematical techniques such as differential privacy. Another approach, which we focus on here, is creating synthetic data that mimics the underlying data. For synthetic data to be a useful mechanism in support of medical innovation and a proxy for real-world evidence, one must demonstrate two properties of the synthetic dataset: (1) any analysis on the real data must be matched by analysis of the synthetic data (statistical fidelity) and (2) the synthetic data must preserve privacy, with minimal risk of re-identification (privacy guarantee). In this paper we propose a framework for quantifying the statistical fidelity and privacy preservation properties of synthetic datasets and demonstrate these metrics for synthetic data generated by Syntegra technology.