Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeUtilizing BERT for Information Retrieval: Survey, Applications, Resources, and Challenges
Recent years have witnessed a substantial increase in the use of deep learning to solve various natural language processing (NLP) problems. Early deep learning models were constrained by their sequential or unidirectional nature, such that they struggled to capture the contextual relationships across text inputs. The introduction of bidirectional encoder representations from transformers (BERT) leads to a robust encoder for the transformer model that can understand the broader context and deliver state-of-the-art performance across various NLP tasks. This has inspired researchers and practitioners to apply BERT to practical problems, such as information retrieval (IR). A survey that focuses on a comprehensive analysis of prevalent approaches that apply pretrained transformer encoders like BERT to IR can thus be useful for academia and the industry. In light of this, we revisit a variety of BERT-based methods in this survey, cover a wide range of techniques of IR, and group them into six high-level categories: (i) handling long documents, (ii) integrating semantic information, (iii) balancing effectiveness and efficiency, (iv) predicting the weights of terms, (v) query expansion, and (vi) document expansion. We also provide links to resources, including datasets and toolkits, for BERT-based IR systems. A key highlight of our survey is the comparison between BERT's encoder-based models and the latest generative Large Language Models (LLMs), such as ChatGPT, which rely on decoders. Despite the popularity of LLMs, we find that for specific tasks, finely tuned BERT encoders still outperform, and at a lower deployment cost. Finally, we summarize the comprehensive outcomes of the survey and suggest directions for future research in the area.
Pre-training with Large Language Model-based Document Expansion for Dense Passage Retrieval
In this paper, we systematically study the potential of pre-training with Large Language Model(LLM)-based document expansion for dense passage retrieval. Concretely, we leverage the capabilities of LLMs for document expansion, i.e. query generation, and effectively transfer expanded knowledge to retrievers using pre-training strategies tailored for passage retrieval. These strategies include contrastive learning and bottlenecked query generation. Furthermore, we incorporate a curriculum learning strategy to reduce the reliance on LLM inferences. Experimental results demonstrate that pre-training with LLM-based document expansion significantly boosts the retrieval performance on large-scale web-search tasks. Our work shows strong zero-shot and out-of-domain retrieval abilities, making it more widely applicable for retrieval when initializing with no human-labeled data.
Query Expansion by Prompting Large Language Models
Query expansion is a widely used technique to improve the recall of search systems. In this paper, we propose an approach to query expansion that leverages the generative abilities of Large Language Models (LLMs). Unlike traditional query expansion approaches such as Pseudo-Relevance Feedback (PRF) that relies on retrieving a good set of pseudo-relevant documents to expand queries, we rely on the generative and creative abilities of an LLM and leverage the knowledge inherent in the model. We study a variety of different prompts, including zero-shot, few-shot and Chain-of-Thought (CoT). We find that CoT prompts are especially useful for query expansion as these prompts instruct the model to break queries down step-by-step and can provide a large number of terms related to the original query. Experimental results on MS-MARCO and BEIR demonstrate that query expansions generated by LLMs can be more powerful than traditional query expansion methods.
JurisTCU: A Brazilian Portuguese Information Retrieval Dataset with Query Relevance Judgments
This paper introduces JurisTCU, a Brazilian Portuguese dataset for legal information retrieval (LIR). The dataset is freely available and consists of 16,045 jurisprudential documents from the Brazilian Federal Court of Accounts, along with 150 queries annotated with relevance judgments. It addresses the scarcity of Portuguese-language LIR datasets with query relevance annotations. The queries are organized into three groups: real user keyword-based queries, synthetic keyword-based queries, and synthetic question-based queries. Relevance judgments were produced through a hybrid approach combining LLM-based scoring with expert domain validation. We used JurisTCU in 14 experiments using lexical search (document expansion methods) and semantic search (BERT-based and OpenAI embeddings). We show that the document expansion methods significantly improve the performance of standard BM25 search on this dataset, with improvements exceeding 45% in P@10, R@10, and nDCG@10 metrics when evaluating short keyword-based queries. Among the embedding models, the OpenAI models produced the best results, with improvements of approximately 70% in P@10, R@10, and nDCG@10 metrics for short keyword-based queries, suggesting that these dense embeddings capture semantic relationships in this domain, surpassing the reliance on lexical terms. Besides offering a dataset for the Portuguese-language IR research community, suitable for evaluating search systems, the results also contribute to enhancing a search system highly relevant to Brazilian citizens.
Corpus-Steered Query Expansion with Large Language Models
Recent studies demonstrate that query expansions generated by large language models (LLMs) can considerably enhance information retrieval systems by generating hypothetical documents that answer the queries as expansions. However, challenges arise from misalignments between the expansions and the retrieval corpus, resulting in issues like hallucinations and outdated information due to the limited intrinsic knowledge of LLMs. Inspired by Pseudo Relevance Feedback (PRF), we introduce Corpus-Steered Query Expansion (CSQE) to promote the incorporation of knowledge embedded within the corpus. CSQE utilizes the relevance assessing capability of LLMs to systematically identify pivotal sentences in the initially-retrieved documents. These corpus-originated texts are subsequently used to expand the query together with LLM-knowledge empowered expansions, improving the relevance prediction between the query and the target documents. Extensive experiments reveal that CSQE exhibits strong performance without necessitating any training, especially with queries for which LLMs lack knowledge.
MILL: Mutual Verification with Large Language Models for Zero-Shot Query Expansion
Query expansion, pivotal in search engines, enhances the representation of user information needs with additional terms. While existing methods expand queries using retrieved or generated contextual documents, each approach has notable limitations. Retrieval-based methods often fail to accurately capture search intent, particularly with brief or ambiguous queries. Generation-based methods, utilizing large language models (LLMs), generally lack corpus-specific knowledge and entail high fine-tuning costs. To address these gaps, we propose a novel zero-shot query expansion framework utilizing LLMs for mutual verification. Specifically, we first design a query-query-document generation method, leveraging LLMs' zero-shot reasoning ability to produce diverse sub-queries and corresponding documents. Then, a mutual verification process synergizes generated and retrieved documents for optimal expansion. Our proposed method is fully zero-shot, and extensive experiments on three public benchmark datasets are conducted to demonstrate its effectiveness over existing methods. Our code is available online at https://github.com/Applied-Machine-Learning-Lab/MILL to ease reproduction.
TREC CAsT 2019: The Conversational Assistance Track Overview
The Conversational Assistance Track (CAsT) is a new track for TREC 2019 to facilitate Conversational Information Seeking (CIS) research and to create a large-scale reusable test collection for conversational search systems. The document corpus is 38,426,252 passages from the TREC Complex Answer Retrieval (CAR) and Microsoft MAchine Reading COmprehension (MARCO) datasets. Eighty information seeking dialogues (30 train, 50 test) are an average of 9 to 10 questions long. Relevance assessments are provided for 30 training topics and 20 test topics. This year 21 groups submitted a total of 65 runs using varying methods for conversational query understanding and ranking. Methods include traditional retrieval based methods, feature based learning-to-rank, neural models, and knowledge enhanced methods. A common theme through the runs is the use of BERT-based neural reranking methods. Leading methods also employed document expansion, conversational query expansion, and generative language models for conversational query rewriting (GPT-2). The results show a gap between automatic systems and those using the manually resolved utterances, with a 35% relative improvement of manual rewrites over the best automatic system.
BERT-QE: Contextualized Query Expansion for Document Re-ranking
Query expansion aims to mitigate the mismatch between the language used in a query and in a document. However, query expansion methods can suffer from introducing non-relevant information when expanding the query. To bridge this gap, inspired by recent advances in applying contextualized models like BERT to the document retrieval task, this paper proposes a novel query expansion model that leverages the strength of the BERT model to select relevant document chunks for expansion. In evaluation on the standard TREC Robust04 and GOV2 test collections, the proposed BERT-QE model significantly outperforms BERT-Large models.
Document Expansion by Query Prediction
One technique to improve the retrieval effectiveness of a search engine is to expand documents with terms that are related or representative of the documents' content.From the perspective of a question answering system, this might comprise questions the document can potentially answer. Following this observation, we propose a simple method that predicts which queries will be issued for a given document and then expands it with those predictions with a vanilla sequence-to-sequence model, trained using datasets consisting of pairs of query and relevant documents. By combining our method with a highly-effective re-ranking component, we achieve the state of the art in two retrieval tasks. In a latency-critical regime, retrieval results alone (without re-ranking) approach the effectiveness of more computationally expensive neural re-rankers but are much faster.
Query2doc: Query Expansion with Large Language Models
This paper introduces a simple yet effective query expansion approach, denoted as query2doc, to improve both sparse and dense retrieval systems. The proposed method first generates pseudo-documents by few-shot prompting large language models (LLMs), and then expands the query with generated pseudo-documents. LLMs are trained on web-scale text corpora and are adept at knowledge memorization. The pseudo-documents from LLMs often contain highly relevant information that can aid in query disambiguation and guide the retrievers. Experimental results demonstrate that query2doc boosts the performance of BM25 by 3% to 15% on ad-hoc IR datasets, such as MS-MARCO and TREC DL, without any model fine-tuning. Furthermore, our method also benefits state-of-the-art dense retrievers in terms of both in-domain and out-of-domain results.
Unsupervised Document Expansion for Information Retrieval with Stochastic Text Generation
One of the challenges in information retrieval (IR) is the vocabulary mismatch problem, which happens when the terms between queries and documents are lexically different but semantically similar. While recent work has proposed to expand the queries or documents by enriching their representations with additional relevant terms to address this challenge, they usually require a large volume of query-document pairs to train an expansion model. In this paper, we propose an Unsupervised Document Expansion with Generation (UDEG) framework with a pre-trained language model, which generates diverse supplementary sentences for the original document without using labels on query-document pairs for training. For generating sentences, we further stochastically perturb their embeddings to generate more diverse sentences for document expansion. We validate our framework on two standard IR benchmark datasets. The results show that our framework significantly outperforms relevant expansion baselines for IR.
Progressive Query Expansion for Retrieval Over Cost-constrained Data Sources
Query expansion has been employed for a long time to improve the accuracy of query retrievers. Earlier works relied on pseudo-relevance feedback (PRF) techniques, which augment a query with terms extracted from documents retrieved in a first stage. However, the documents may be noisy hindering the effectiveness of the ranking. To avoid this, recent studies have instead used Large Language Models (LLMs) to generate additional content to expand a query. These techniques are prone to hallucination and also focus on the LLM usage cost. However, the cost may be dominated by the retrieval in several important practical scenarios, where the corpus is only available via APIs which charge a fee per retrieved document. We propose combining classic PRF techniques with LLMs and create a progressive query expansion algorithm ProQE that iteratively expands the query as it retrieves more documents. ProQE is compatible with both sparse and dense retrieval systems. Our experimental results on four retrieval datasets show that ProQE outperforms state-of-the-art baselines by 37% and is the most cost-effective.
LLM-based Query Expansion Fails for Unfamiliar and Ambiguous Queries
Query expansion (QE) enhances retrieval by incorporating relevant terms, with large language models (LLMs) offering an effective alternative to traditional rule-based and statistical methods. However, LLM-based QE suffers from a fundamental limitation: it often fails to generate relevant knowledge, degrading search performance. Prior studies have focused on hallucination, yet its underlying cause--LLM knowledge deficiencies--remains underexplored. This paper systematically examines two failure cases in LLM-based QE: (1) when the LLM lacks query knowledge, leading to incorrect expansions, and (2) when the query is ambiguous, causing biased refinements that narrow search coverage. We conduct controlled experiments across multiple datasets, evaluating the effects of knowledge and query ambiguity on retrieval performance using sparse and dense retrieval models. Our results reveal that LLM-based QE can significantly degrade the retrieval effectiveness when knowledge in the LLM is insufficient or query ambiguity is high. We introduce a framework for evaluating QE under these conditions, providing insights into the limitations of LLM-based retrieval augmentation.
Exploring the Best Practices of Query Expansion with Large Language Models
Large Language Models (LLMs) are foundational in language technologies, particularly in information retrieval (IR). Previous studies have utilized LLMs for query expansion, achieving notable improvements in IR. In this paper, we thoroughly explore the best practice of leveraging LLMs for query expansion. To this end, we introduce a training-free, straightforward yet effective framework called Multi-Text Generation Integration (MuGI). It leverages LLMs to generate multiple pseudo-references, integrating them with queries to enhance both sparse and dense retrievers. Our empirical findings reveal that: (1) Increasing the number of samples from LLMs benefits IR systems; (2) A balance between the query and pseudo-documents, and an effective integration strategy, is critical for high performance; (3) Contextual information from LLMs is essential, even boost a 23M model to outperform a 7B baseline model; (4) Pseudo relevance feedback can further calibrate queries for improved performance; and (5) Query expansion is widely applicable and versatile, consistently enhancing models ranging from 23M to 7B parameters. Our code and all generated references are made available at https://github.com/lezhang7/Retrieval_MuGI
QUEST: A Retrieval Dataset of Entity-Seeking Queries with Implicit Set Operations
Formulating selective information needs results in queries that implicitly specify set operations, such as intersection, union, and difference. For instance, one might search for "shorebirds that are not sandpipers" or "science-fiction films shot in England". To study the ability of retrieval systems to meet such information needs, we construct QUEST, a dataset of 3357 natural language queries with implicit set operations, that map to a set of entities corresponding to Wikipedia documents. The dataset challenges models to match multiple constraints mentioned in queries with corresponding evidence in documents and correctly perform various set operations. The dataset is constructed semi-automatically using Wikipedia category names. Queries are automatically composed from individual categories, then paraphrased and further validated for naturalness and fluency by crowdworkers. Crowdworkers also assess the relevance of entities based on their documents and highlight attribution of query constraints to spans of document text. We analyze several modern retrieval systems, finding that they often struggle on such queries. Queries involving negation and conjunction are particularly challenging and systems are further challenged with combinations of these operations.
Expand, Rerank, and Retrieve: Query Reranking for Open-Domain Question Answering
We propose EAR, a query Expansion And Reranking approach for improving passage retrieval, with the application to open-domain question answering. EAR first applies a query expansion model to generate a diverse set of queries, and then uses a query reranker to select the ones that could lead to better retrieval results. Motivated by the observation that the best query expansion often is not picked by greedy decoding, EAR trains its reranker to predict the rank orders of the gold passages when issuing the expanded queries to a given retriever. By connecting better the query expansion model and retriever, EAR significantly enhances a traditional sparse retrieval method, BM25. Empirically, EAR improves top-5/20 accuracy by 3-8 and 5-10 points in in-domain and out-of-domain settings, respectively, when compared to a vanilla query expansion model, GAR, and a dense retrieval model, DPR.
Decomposing Complex Queries for Tip-of-the-tongue Retrieval
When re-finding items, users who forget or are uncertain about identifying details often rely on creative strategies for expressing their information needs -- complex queries that describe content elements (e.g., book characters or events), information beyond the document text (e.g., descriptions of book covers), or personal context (e.g., when they read a book). This retrieval setting, called tip of the tongue (TOT), is especially challenging for models heavily reliant on lexical and semantic overlap between query and document text. In this work, we introduce a simple yet effective framework for handling such complex queries by decomposing the query into individual clues, routing those as sub-queries to specialized retrievers, and ensembling the results. This approach allows us to take advantage of off-the-shelf retrievers (e.g., CLIP for retrieving images of book covers) or incorporate retriever-specific logic (e.g., date constraints). We show that our framework incorportating query decompositions into retrievers can improve gold book recall up to 7% relative again for Recall@5 on a new collection of 14,441 real-world query-book pairs from an online community for resolving TOT inquiries.
KTRL+F: Knowledge-Augmented In-Document Search
We introduce a new problem KTRL+F, a knowledge-augmented in-document search task that necessitates real-time identification of all semantic targets within a document with the awareness of external sources through a single natural query. This task addresses following unique challenges for in-document search: 1) utilizing knowledge outside the document for extended use of additional information about targets to bridge the semantic gap between the query and the targets, and 2) balancing between real-time applicability with the performance. We analyze various baselines in KTRL+F and find there are limitations of existing models, such as hallucinations, low latency, or difficulties in leveraging external knowledge. Therefore we propose a Knowledge-Augmented Phrase Retrieval model that shows a promising balance between speed and performance by simply augmenting external knowledge embedding in phrase embedding. Additionally, we conduct a user study to verify whether solving KTRL+F can enhance search experience of users. It demonstrates that even with our simple model users can reduce the time for searching with less queries and reduced extra visits to other sources for collecting evidence. We encourage the research community to work on KTRL+F to enhance more efficient in-document information access.
Imagine All The Relevance: Scenario-Profiled Indexing with Knowledge Expansion for Dense Retrieval
Existing dense retrieval models struggle with reasoning-intensive retrieval task as they fail to capture implicit relevance that requires reasoning beyond surface-level semantic information. To address these challenges, we propose Scenario-Profiled Indexing with Knowledge Expansion (SPIKE), a dense retrieval framework that explicitly indexes implicit relevance by decomposing documents into scenario-based retrieval units. SPIKE organizes documents into scenario, which encapsulates the reasoning process necessary to uncover implicit relationships between hypothetical information needs and document content. SPIKE constructs a scenario-augmented dataset using a powerful teacher large language model (LLM), then distills these reasoning capabilities into a smaller, efficient scenario generator. During inference, SPIKE incorporates scenario-level relevance alongside document-level relevance, enabling reasoning-aware retrieval. Extensive experiments demonstrate that SPIKE consistently enhances retrieval performance across various query types and dense retrievers. It also enhances the retrieval experience for users through scenario and offers valuable contextual information for LLMs in retrieval-augmented generation (RAG).
Improving Retrieval for RAG based Question Answering Models on Financial Documents
The effectiveness of Large Language Models (LLMs) in generating accurate responses relies heavily on the quality of input provided, particularly when employing Retrieval Augmented Generation (RAG) techniques. RAG enhances LLMs by sourcing the most relevant text chunk(s) to base queries upon. Despite the significant advancements in LLMs' response quality in recent years, users may still encounter inaccuracies or irrelevant answers; these issues often stem from suboptimal text chunk retrieval by RAG rather than the inherent capabilities of LLMs. To augment the efficacy of LLMs, it is crucial to refine the RAG process. This paper explores the existing constraints of RAG pipelines and introduces methodologies for enhancing text retrieval. It delves into strategies such as sophisticated chunking techniques, query expansion, the incorporation of metadata annotations, the application of re-ranking algorithms, and the fine-tuning of embedding algorithms. Implementing these approaches can substantially improve the retrieval quality, thereby elevating the overall performance and reliability of LLMs in processing and responding to queries.
QueryExplorer: An Interactive Query Generation Assistant for Search and Exploration
Formulating effective search queries remains a challenging task, particularly when users lack expertise in a specific domain or are not proficient in the language of the content. Providing example documents of interest might be easier for a user. However, such query-by-example scenarios are prone to concept drift, and the retrieval effectiveness is highly sensitive to the query generation method, without a clear way to incorporate user feedback. To enable exploration and to support Human-In-The-Loop experiments we propose QueryExplorer -- an interactive query generation, reformulation, and retrieval interface with support for HuggingFace generation models and PyTerrier's retrieval pipelines and datasets, and extensive logging of human feedback. To allow users to create and modify effective queries, our demo supports complementary approaches of using LLMs interactively, assisting the user with edits and feedback at multiple stages of the query formulation process. With support for recording fine-grained interactions and user annotations, QueryExplorer can serve as a valuable experimental and research platform for annotation, qualitative evaluation, and conducting Human-in-the-Loop (HITL) experiments for complex search tasks where users struggle to formulate queries.
Crafting the Path: Robust Query Rewriting for Information Retrieval
Query rewriting aims to generate a new query that can complement the original query to improve the information retrieval system. Recent studies on query rewriting, such as query2doc (Q2D), query2expand (Q2E) and querey2cot (Q2C), rely on the internal knowledge of Large Language Models (LLMs) to generate a relevant passage to add information to the query. Nevertheless, the efficacy of these methodologies may markedly decline in instances where the requisite knowledge is not encapsulated within the model's intrinsic parameters. In this paper, we propose a novel structured query rewriting method called Crafting the Path tailored for retrieval systems. Crafting the Path involves a three-step process that crafts query-related information necessary for finding the passages to be searched in each step. Specifically, the Crafting the Path begins with Query Concept Comprehension, proceeds to Query Type Identification, and finally conducts Expected Answer Extraction. Experimental results show that our method outperforms previous rewriting methods, especially in less familiar domains for LLMs. We demonstrate that our method is less dependent on the internal parameter knowledge of the model and generates queries with fewer factual inaccuracies. Furthermore, we observe that Crafting the Path has less latency compared to the baselines.
DMQR-RAG: Diverse Multi-Query Rewriting for RAG
Large language models often encounter challenges with static knowledge and hallucinations, which undermine their reliability. Retrieval-augmented generation (RAG) mitigates these issues by incorporating external information. However, user queries frequently contain noise and intent deviations, necessitating query rewriting to improve the relevance of retrieved documents. In this paper, we introduce DMQR-RAG, a Diverse Multi-Query Rewriting framework designed to improve the performance of both document retrieval and final responses in RAG. Specifically, we investigate how queries with varying information quantities can retrieve a diverse array of documents, presenting four rewriting strategies that operate at different levels of information to enhance the performance of baseline approaches. Additionally, we propose an adaptive strategy selection method that minimizes the number of rewrites while optimizing overall performance. Our methods have been rigorously validated through extensive experiments conducted in both academic and industry settings.
Dense X Retrieval: What Retrieval Granularity Should We Use?
Dense retrieval has become a prominent method to obtain relevant context or world knowledge in open-domain NLP tasks. When we use a learned dense retriever on a retrieval corpus at inference time, an often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence. We discover that the retrieval unit choice significantly impacts the performance of both retrieval and downstream tasks. Distinct from the typical approach of using passages or sentences, we introduce a novel retrieval unit, proposition, for dense retrieval. Propositions are defined as atomic expressions within text, each encapsulating a distinct factoid and presented in a concise, self-contained natural language format. We conduct an empirical comparison of different retrieval granularity. Our results reveal that proposition-based retrieval significantly outperforms traditional passage or sentence-based methods in dense retrieval. Moreover, retrieval by proposition also enhances the performance of downstream QA tasks, since the retrieved texts are more condensed with question-relevant information, reducing the need for lengthy input tokens and minimizing the inclusion of extraneous, irrelevant information.
Enhancing Retrieval-Augmented Generation: A Study of Best Practices
Retrieval-Augmented Generation (RAG) systems have recently shown remarkable advancements by integrating retrieval mechanisms into language models, enhancing their ability to produce more accurate and contextually relevant responses. However, the influence of various components and configurations within RAG systems remains underexplored. A comprehensive understanding of these elements is essential for tailoring RAG systems to complex retrieval tasks and ensuring optimal performance across diverse applications. In this paper, we develop several advanced RAG system designs that incorporate query expansion, various novel retrieval strategies, and a novel Contrastive In-Context Learning RAG. Our study systematically investigates key factors, including language model size, prompt design, document chunk size, knowledge base size, retrieval stride, query expansion techniques, Contrastive In-Context Learning knowledge bases, multilingual knowledge bases, and Focus Mode retrieving relevant context at sentence-level. Through extensive experimentation, we provide a detailed analysis of how these factors influence response quality. Our findings offer actionable insights for developing RAG systems, striking a balance between contextual richness and retrieval-generation efficiency, thereby paving the way for more adaptable and high-performing RAG frameworks in diverse real-world scenarios. Our code and implementation details are publicly available.
DeeperImpact: Optimizing Sparse Learned Index Structures
A lot of recent work has focused on sparse learned indexes that use deep neural architectures to significantly improve retrieval quality while keeping the efficiency benefits of the inverted index. While such sparse learned structures achieve effectiveness far beyond those of traditional inverted index-based rankers, there is still a gap in effectiveness to the best dense retrievers, or even to sparse methods that leverage more expensive optimizations such as query expansion and query term weighting. We focus on narrowing this gap by revisiting and optimizing DeepImpact, a sparse retrieval approach that uses DocT5Query for document expansion followed by a BERT language model to learn impact scores for document terms. We first reinvestigate the expansion process and find that the recently proposed Doc2Query query filtration does not enhance retrieval quality when used with DeepImpact. Instead, substituting T5 with a fine-tuned Llama 2 model for query prediction results in a considerable improvement. Subsequently, we study training strategies that have proven effective for other models, in particular the use of hard negatives, distillation, and pre-trained CoCondenser model initialization. Our results significantly narrow the effectiveness gap with the most effective versions of SPLADE.
Doc2Query--: When Less is More
Doc2Query -- the process of expanding the content of a document before indexing using a sequence-to-sequence model -- has emerged as a prominent technique for improving the first-stage retrieval effectiveness of search engines. However, sequence-to-sequence models are known to be prone to "hallucinating" content that is not present in the source text. We argue that Doc2Query is indeed prone to hallucination, which ultimately harms retrieval effectiveness and inflates the index size. In this work, we explore techniques for filtering out these harmful queries prior to indexing. We find that using a relevance model to remove poor-quality queries can improve the retrieval effectiveness of Doc2Query by up to 16%, while simultaneously reducing mean query execution time by 23% and cutting the index size by 33%. We release the code, data, and a live demonstration to facilitate reproduction and further exploration at https://github.com/terrierteam/pyterrier_doc2query.
Generative Relevance Feedback with Large Language Models
Current query expansion models use pseudo-relevance feedback to improve first-pass retrieval effectiveness; however, this fails when the initial results are not relevant. Instead of building a language model from retrieved results, we propose Generative Relevance Feedback (GRF) that builds probabilistic feedback models from long-form text generated from Large Language Models. We study the effective methods for generating text by varying the zero-shot generation subtasks: queries, entities, facts, news articles, documents, and essays. We evaluate GRF on document retrieval benchmarks covering a diverse set of queries and document collections, and the results show that GRF methods significantly outperform previous PRF methods. Specifically, we improve MAP between 5-19% and NDCG@10 17-24% compared to RM3 expansion, and achieve the best R@1k effectiveness on all datasets compared to state-of-the-art sparse, dense, and expansion models.
Prompt-Based Document Modifications In Ranking Competitions
We study prompting-based approaches with Large Language Models (LLMs) for modifying documents so as to promote their ranking in a competitive search setting. Our methods are inspired by prior work on leveraging LLMs as rankers. We evaluate our approach by deploying it as a bot in previous ranking competitions and in competitions we organized. Our findings demonstrate that our approach effectively improves document ranking while preserving high levels of faithfulness to the original content and maintaining overall document quality.
Patience is all you need! An agentic system for performing scientific literature review
Large language models (LLMs) have grown in their usage to provide support for question answering across numerous disciplines. The models on their own have already shown promise for answering basic questions, however fail quickly where expert domain knowledge is required or the question is nuanced. Scientific research often involves searching for relevant literature, distilling pertinent information from that literature and analysing how the findings support or contradict one another. The information is often encapsulated in the full text body of research articles, rather than just in the abstracts. Statements within these articles frequently require the wider article context to be fully understood. We have built an LLM-based system that performs such search and distillation of information encapsulated in scientific literature, and we evaluate our keyword based search and information distillation system against a set of biology related questions from previously released literature benchmarks. We demonstrate sparse retrieval methods exhibit results close to state of the art without the need for dense retrieval, with its associated infrastructure and complexity overhead. We also show how to increase the coverage of relevant documents for literature review generation.
QUILL: Query Intent with Large Language Models using Retrieval Augmentation and Multi-stage Distillation
Large Language Models (LLMs) have shown impressive results on a variety of text understanding tasks. Search queries though pose a unique challenge, given their short-length and lack of nuance or context. Complicated feature engineering efforts do not always lead to downstream improvements as their performance benefits may be offset by increased complexity of knowledge distillation. Thus, in this paper we make the following contributions: (1) We demonstrate that Retrieval Augmentation of queries provides LLMs with valuable additional context enabling improved understanding. While Retrieval Augmentation typically increases latency of LMs (thus hurting distillation efficacy), (2) we provide a practical and effective way of distilling Retrieval Augmentation LLMs. Specifically, we use a novel two-stage distillation approach that allows us to carry over the gains of retrieval augmentation, without suffering the increased compute typically associated with it. (3) We demonstrate the benefits of the proposed approach (QUILL) on a billion-scale, real-world query understanding system resulting in huge gains. Via extensive experiments, including on public benchmarks, we believe this work offers a recipe for practical use of retrieval-augmented query understanding.
STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases
Answering real-world user queries, such as product search, often requires accurate retrieval of information from semi-structured knowledge bases or databases that involve blend of unstructured (e.g., textual descriptions of products) and structured (e.g., entity relations of products) information. However, previous works have mostly studied textual and relational retrieval tasks as separate topics. To address the gap, we develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Relational Knowledge Bases. We design a novel pipeline to synthesize natural and realistic user queries that integrate diverse relational information and complex textual properties, as well as their ground-truth answers. Moreover, we rigorously conduct human evaluation to validate the quality of our benchmark, which covers a variety of practical applications, including product recommendations, academic paper searches, and precision medicine inquiries. Our benchmark serves as a comprehensive testbed for evaluating the performance of retrieval systems, with an emphasis on retrieval approaches driven by large language models (LLMs). Our experiments suggest that the STARK datasets present significant challenges to the current retrieval and LLM systems, indicating the demand for building more capable retrieval systems that can handle both textual and relational aspects.
Context Aware Query Rewriting for Text Rankers using LLM
Query rewriting refers to an established family of approaches that are applied to underspecified and ambiguous queries to overcome the vocabulary mismatch problem in document ranking. Queries are typically rewritten during query processing time for better query modelling for the downstream ranker. With the advent of large-language models (LLMs), there have been initial investigations into using generative approaches to generate pseudo documents to tackle this inherent vocabulary gap. In this work, we analyze the utility of LLMs for improved query rewriting for text ranking tasks. We find that there are two inherent limitations of using LLMs as query re-writers -- concept drift when using only queries as prompts and large inference costs during query processing. We adopt a simple, yet surprisingly effective, approach called context aware query rewriting (CAR) to leverage the benefits of LLMs for query understanding. Firstly, we rewrite ambiguous training queries by context-aware prompting of LLMs, where we use only relevant documents as context.Unlike existing approaches, we use LLM-based query rewriting only during the training phase. Eventually, a ranker is fine-tuned on the rewritten queries instead of the original queries during training. In our extensive experiments, we find that fine-tuning a ranker using re-written queries offers a significant improvement of up to 33% on the passage ranking task and up to 28% on the document ranking task when compared to the baseline performance of using original queries.
QuOTE: Question-Oriented Text Embeddings
We present QuOTE (Question-Oriented Text Embeddings), a novel enhancement to retrieval-augmented generation (RAG) systems, aimed at improving document representation for accurate and nuanced retrieval. Unlike traditional RAG pipelines, which rely on embedding raw text chunks, QuOTE augments chunks with hypothetical questions that the chunk can potentially answer, enriching the representation space. This better aligns document embeddings with user query semantics, and helps address issues such as ambiguity and context-dependent relevance. Through extensive experiments across diverse benchmarks, we demonstrate that QuOTE significantly enhances retrieval accuracy, including in multi-hop question-answering tasks. Our findings highlight the versatility of question generation as a fundamental indexing strategy, opening new avenues for integrating question generation into retrieval-based AI pipelines.
HopRAG: Multi-Hop Reasoning for Logic-Aware Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems often struggle with imperfect retrieval, as traditional retrievers focus on lexical or semantic similarity rather than logical relevance. To address this, we propose HopRAG, a novel RAG framework that augments retrieval with logical reasoning through graph-structured knowledge exploration. During indexing, HopRAG constructs a passage graph, with text chunks as vertices and logical connections established via LLM-generated pseudo-queries as edges. During retrieval, it employs a retrieve-reason-prune mechanism: starting with lexically or semantically similar passages, the system explores multi-hop neighbors guided by pseudo-queries and LLM reasoning to identify truly relevant ones. Experiments on multiple multi-hop benchmarks demonstrate that HopRAG's retrieve-reason-prune mechanism can expand the retrieval scope based on logical connections and improve final answer quality.
Understanding the User: An Intent-Based Ranking Dataset
As information retrieval systems continue to evolve, accurate evaluation and benchmarking of these systems become pivotal. Web search datasets, such as MS MARCO, primarily provide short keyword queries without accompanying intent or descriptions, posing a challenge in comprehending the underlying information need. This paper proposes an approach to augmenting such datasets to annotate informative query descriptions, with a focus on two prominent benchmark datasets: TREC-DL-21 and TREC-DL-22. Our methodology involves utilizing state-of-the-art LLMs to analyze and comprehend the implicit intent within individual queries from benchmark datasets. By extracting key semantic elements, we construct detailed and contextually rich descriptions for these queries. To validate the generated query descriptions, we employ crowdsourcing as a reliable means of obtaining diverse human perspectives on the accuracy and informativeness of the descriptions. This information can be used as an evaluation set for tasks such as ranking, query rewriting, or others.
Ragnarök: A Reusable RAG Framework and Baselines for TREC 2024 Retrieval-Augmented Generation Track
Did you try out the new Bing Search? Or maybe you fiddled around with Google AI~Overviews? These might sound familiar because the modern-day search stack has recently evolved to include retrieval-augmented generation (RAG) systems. They allow searching and incorporating real-time data into large language models (LLMs) to provide a well-informed, attributed, concise summary in contrast to the traditional search paradigm that relies on displaying a ranked list of documents. Therefore, given these recent advancements, it is crucial to have an arena to build, test, visualize, and systematically evaluate RAG-based search systems. With this in mind, we propose the TREC 2024 RAG Track to foster innovation in evaluating RAG systems. In our work, we lay out the steps we've made towards making this track a reality -- we describe the details of our reusable framework, Ragnar\"ok, explain the curation of the new MS MARCO V2.1 collection choice, release the development topics for the track, and standardize the I/O definitions which assist the end user. Next, using Ragnar\"ok, we identify and provide key industrial baselines such as OpenAI's GPT-4o or Cohere's Command R+. Further, we introduce a web-based user interface for an interactive arena allowing benchmarking pairwise RAG systems by crowdsourcing. We open-source our Ragnar\"ok framework and baselines to achieve a unified standard for future RAG systems.
LexSemBridge: Fine-Grained Dense Representation Enhancement through Token-Aware Embedding Augmentation
As queries in retrieval-augmented generation (RAG) pipelines powered by large language models (LLMs) become increasingly complex and diverse, dense retrieval models have demonstrated strong performance in semantic matching. Nevertheless, they often struggle with fine-grained retrieval tasks, where precise keyword alignment and span-level localization are required, even in cases with high lexical overlap that would intuitively suggest easier retrieval. To systematically evaluate this limitation, we introduce two targeted tasks, keyword retrieval and part-of-passage retrieval, designed to simulate practical fine-grained scenarios. Motivated by these observations, we propose LexSemBridge, a unified framework that enhances dense query representations through fine-grained, input-aware vector modulation. LexSemBridge constructs latent enhancement vectors from input tokens using three paradigms: Statistical (SLR), Learned (LLR), and Contextual (CLR), and integrates them with dense embeddings via element-wise interaction. Theoretically, we show that this modulation preserves the semantic direction while selectively amplifying discriminative dimensions. LexSemBridge operates as a plug-in without modifying the backbone encoder and naturally extends to both text and vision modalities. Extensive experiments across semantic and fine-grained retrieval tasks validate the effectiveness and generality of our approach. All code and models are publicly available at https://github.com/Jasaxion/LexSemBridge/
PreQRAG -- Classify and Rewrite for Enhanced RAG
This paper presents the submission of the UDInfo team to the SIGIR 2025 LiveRAG Challenge. We introduce PreQRAG, a Retrieval Augmented Generation (RAG) architecture designed to improve retrieval and generation quality through targeted question preprocessing. PreQRAG incorporates a pipeline that first classifies each input question as either single-document or multi-document type. For single-document questions, we employ question rewriting techniques to improve retrieval precision and generation relevance. For multi-document questions, we decompose complex queries into focused sub-questions that can be processed more effectively by downstream components. This classification and rewriting strategy improves the RAG performance. Experimental evaluation of the LiveRAG Challenge dataset demonstrates the effectiveness of our question-type-aware architecture, with PreQRAG achieving the preliminary second place in Session 2 of the LiveRAG challenge.
Query Understanding via Intent Description Generation
Query understanding is a fundamental problem in information retrieval (IR), which has attracted continuous attention through the past decades. Many different tasks have been proposed for understanding users' search queries, e.g., query classification or query clustering. However, it is not that precise to understand a search query at the intent class/cluster level due to the loss of many detailed information. As we may find in many benchmark datasets, e.g., TREC and SemEval, queries are often associated with a detailed description provided by human annotators which clearly describes its intent to help evaluate the relevance of the documents. If a system could automatically generate a detailed and precise intent description for a search query, like human annotators, that would indicate much better query understanding has been achieved. In this paper, therefore, we propose a novel Query-to-Intent-Description (Q2ID) task for query understanding. Unlike those existing ranking tasks which leverage the query and its description to compute the relevance of documents, Q2ID is a reverse task which aims to generate a natural language intent description based on both relevant and irrelevant documents of a given query. To address this new task, we propose a novel Contrastive Generation model, namely CtrsGen for short, to generate the intent description by contrasting the relevant documents with the irrelevant documents given a query. We demonstrate the effectiveness of our model by comparing with several state-of-the-art generation models on the Q2ID task. We discuss the potential usage of such Q2ID technique through an example application.
T2Ranking: A large-scale Chinese Benchmark for Passage Ranking
Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/
ImpliRet: Benchmarking the Implicit Fact Retrieval Challenge
Retrieval systems are central to many NLP pipelines, but often rely on surface-level cues such as keyword overlap and lexical semantic similarity. To evaluate retrieval beyond these shallow signals, recent benchmarks introduce reasoning-heavy queries; however, they primarily shift the burden to query-side processing techniques -- like prompting or multi-hop retrieval -- that can help resolve complexity. In contrast, we present ImpliRet, a benchmark that shifts the reasoning challenge to document-side processing: The queries are simple, but relevance depends on facts stated implicitly in documents through temporal (e.g., resolving "two days ago"), arithmetic, and world knowledge relationships. We evaluate a range of sparse and dense retrievers, all of which struggle in this setting: the best nDCG@10 is only 15.07%. We also test whether long-context models can overcome this limitation. But even with a short context of only ten documents, including the positive document, GPT-4.1 scores only 35.06%, showing that document-side reasoning remains a challenge. Our codes are available at github.com/ZeinabTaghavi/IMPLIRET.Contribution.
ARAGOG: Advanced RAG Output Grading
Retrieval-Augmented Generation (RAG) is essential for integrating external knowledge into Large Language Model (LLM) outputs. While the literature on RAG is growing, it primarily focuses on systematic reviews and comparisons of new state-of-the-art (SoTA) techniques against their predecessors, with a gap in extensive experimental comparisons. This study begins to address this gap by assessing various RAG methods' impacts on retrieval precision and answer similarity. We found that Hypothetical Document Embedding (HyDE) and LLM reranking significantly enhance retrieval precision. However, Maximal Marginal Relevance (MMR) and Cohere rerank did not exhibit notable advantages over a baseline Naive RAG system, and Multi-query approaches underperformed. Sentence Window Retrieval emerged as the most effective for retrieval precision, despite its variable performance on answer similarity. The study confirms the potential of the Document Summary Index as a competent retrieval approach. All resources related to this research are publicly accessible for further investigation through our GitHub repository ARAGOG (https://github.com/predlico/ARAGOG). We welcome the community to further this exploratory study in RAG systems.
Long Context vs. RAG for LLMs: An Evaluation and Revisits
Extending context windows (i.e., Long Context, LC) and using retrievers to selectively access relevant information (i.e., Retrieval-Augmented Generation, RAG) are the two main strategies to enable LLMs to incorporate extremely long external contexts. This paper revisits recent studies on this topic, highlighting their key insights and discrepancies. We then provide a more comprehensive evaluation by filtering out questions answerable without external context, identifying the most effective retrieval methods, and expanding the datasets. We show that LC generally outperforms RAG in question-answering benchmarks, especially for Wikipedia-based questions. Summarization-based retrieval performs comparably to LC, while chunk-based retrieval lags behind. However, RAG has advantages in dialogue-based and general question queries. These insights underscore the trade-offs between RAG and LC strategies, offering guidance for future optimization of LLMs with external knowledge sources. We also provide an in-depth discussion on this topic, highlighting the overlooked importance of context relevance in existing studies.
PaperRegister: Boosting Flexible-grained Paper Search via Hierarchical Register Indexing
Paper search is an important activity for researchers, typically involving using a query with description of a topic to find relevant papers. As research deepens, paper search requirements may become more flexible, sometimes involving specific details such as module configuration rather than being limited to coarse-grained topics. However, previous paper search systems are unable to meet these flexible-grained requirements, as these systems mainly collect paper abstracts to construct index of corpus, which lack detailed information to support retrieval by finer-grained queries. In this work, we propose PaperRegister, consisted of offline hierarchical indexing and online adaptive retrieval, transforming traditional abstract-based index into hierarchical index tree for paper search, thereby supporting queries at flexible granularity. Experiments on paper search tasks across a range of granularity demonstrate that PaperRegister achieves the state-of-the-art performance, and particularly excels in fine-grained scenarios, highlighting the good potential as an effective solution for flexible-grained paper search in real-world applications. Code for this work is in https://github.com/Li-Z-Q/PaperRegister.
On the Theoretical Limitations of Embedding-Based Retrieval
Vector embeddings have been tasked with an ever-increasing set of retrieval tasks over the years, with a nascent rise in using them for reasoning, instruction-following, coding, and more. These new benchmarks push embeddings to work for any query and any notion of relevance that could be given. While prior works have pointed out theoretical limitations of vector embeddings, there is a common assumption that these difficulties are exclusively due to unrealistic queries, and those that are not can be overcome with better training data and larger models. In this work, we demonstrate that we may encounter these theoretical limitations in realistic settings with extremely simple queries. We connect known results in learning theory, showing that the number of top-k subsets of documents capable of being returned as the result of some query is limited by the dimension of the embedding. We empirically show that this holds true even if we restrict to k=2, and directly optimize on the test set with free parameterized embeddings. We then create a realistic dataset called LIMIT that stress tests models based on these theoretical results, and observe that even state-of-the-art models fail on this dataset despite the simple nature of the task. Our work shows the limits of embedding models under the existing single vector paradigm and calls for future research to develop methods that can resolve this fundamental limitation.
Task-aware Retrieval with Instructions
We study the problem of retrieval with instructions, where users of a retrieval system explicitly describe their intent along with their queries. We aim to develop a general-purpose task-aware retrieval system using multi-task instruction tuning, which can follow human-written instructions to find the best documents for a given query. We introduce the first large-scale collection of approximately 40 retrieval datasets with instructions, BERRI, and present TART, a multi-task retrieval system trained on BERRI with instructions. TART shows strong capabilities to adapt to a new retrieval task via instructions and advances the state of the art on two zero-shot retrieval benchmarks, BEIR and LOTTE, outperforming models up to three times larger. We further introduce a new evaluation setup, X^2-Retrieval to better reflect real-world scenarios, where diverse domains and tasks are pooled and a system needs to find documents aligning users' intents. In this setup, TART significantly outperforms competitive baselines, further demonstrating the effectiveness of guiding retrieval with instructions.
Conversational Query Reformulation with the Guidance of Retrieved Documents
Conversational search seeks to retrieve relevant passages for the given questions in Conversational QA (ConvQA). Questions in ConvQA face challenges such as omissions and coreferences, making it difficult to obtain desired search results. Conversational Query Reformulation (CQR) transforms these current queries into de-contextualized forms to resolve these issues. However, existing CQR methods focus on rewriting human-friendly queries, which may not always yield optimal search results for the retriever. To overcome this challenge, we introduce GuideCQR, a framework that utilizes guided documents to refine queries, ensuring that they are optimal for retrievers. Specifically, we augment keywords, generate expected answers from the re-ranked documents, and unify them with the filtering process. Experimental results show that queries enhanced by guided documents outperform previous CQR methods. Especially, GuideCQR surpasses the performance of Large Language Model (LLM) prompt-powered approaches and demonstrates the importance of the guided documents in formulating retriever-friendly queries across diverse setups.
DAPR: A Benchmark on Document-Aware Passage Retrieval
Recent neural retrieval mainly focuses on ranking short texts and is challenged with long documents. Existing work mainly evaluates either ranking passages or whole documents. However, there are many cases where the users want to find a relevant passage within a long document from a huge corpus, e.g. legal cases, research papers, etc. In this scenario, the passage often provides little document context and thus challenges the current approaches to finding the correct document and returning accurate results. To fill this gap, we propose and name this task Document-Aware Passage Retrieval (DAPR) and build a benchmark including multiple datasets from various domains, covering both DAPR and whole-document retrieval. In experiments, we extend the state-of-the-art neural passage retrievers with document-level context via different approaches including prepending document summary, pooling over passage representations, and hybrid retrieval with BM25. The hybrid-retrieval systems, the overall best, can only improve on the DAPR tasks marginally while significantly improving on the document-retrieval tasks. This motivates further research in developing better retrieval systems for the new task. The code and the data are available at https://github.com/kwang2049/dapr
GQE-PRF: Generative Query Expansion with Pseudo-Relevance Feedback
Query expansion with pseudo-relevance feedback (PRF) is a powerful approach to enhance the effectiveness in information retrieval. Recently, with the rapid advance of deep learning techniques, neural text generation has achieved promising success in many natural language tasks. To leverage the strength of text generation for information retrieval, in this article, we propose a novel approach which effectively integrates text generation models into PRF-based query expansion. In particular, our approach generates augmented query terms via neural text generation models conditioned on both the initial query and pseudo-relevance feedback. Moreover, in order to train the generative model, we adopt the conditional generative adversarial nets (CGANs) and propose the PRF-CGAN method in which both the generator and the discriminator are conditioned on the pseudo-relevance feedback. We evaluate the performance of our approach on information retrieval tasks using two benchmark datasets. The experimental results show that our approach achieves comparable performance or outperforms traditional query expansion methods on both the retrieval and reranking tasks.
Generative Query Reformulation Using Ensemble Prompting, Document Fusion, and Relevance Feedback
Query Reformulation (QR) is a set of techniques used to transform a user's original search query to a text that better aligns with the user's intent and improves their search experience. Recently, zero-shot QR has been a promising approach due to its ability to exploit knowledge inherent in large language models. Inspired by the success of ensemble prompting strategies which have benefited other tasks, we investigate if they can improve query reformulation. In this context, we propose two ensemble-based prompting techniques, GenQREnsemble and GenQRFusion which leverage paraphrases of a zero-shot instruction to generate multiple sets of keywords to improve retrieval performance ultimately. We further introduce their post-retrieval variants to incorporate relevance feedback from a variety of sources, including an oracle simulating a human user and a "critic" LLM. We demonstrate that an ensemble of query reformulations can improve retrieval effectiveness by up to 18% on nDCG@10 in pre-retrieval settings and 9% on post-retrieval settings on multiple benchmarks, outperforming all previously reported SOTA results. We perform subsequent analyses to investigate the effects of feedback documents, incorporate domain-specific instructions, filter reformulations, and generate fluent reformulations that might be more beneficial to human searchers. Together, the techniques and the results presented in this paper establish a new state of the art in automated query reformulation for retrieval and suggest promising directions for future research.
Enhancing Conversational Search: Large Language Model-Aided Informative Query Rewriting
Query rewriting plays a vital role in enhancing conversational search by transforming context-dependent user queries into standalone forms. Existing approaches primarily leverage human-rewritten queries as labels to train query rewriting models. However, human rewrites may lack sufficient information for optimal retrieval performance. To overcome this limitation, we propose utilizing large language models (LLMs) as query rewriters, enabling the generation of informative query rewrites through well-designed instructions. We define four essential properties for well-formed rewrites and incorporate all of them into the instruction. In addition, we introduce the role of rewrite editors for LLMs when initial query rewrites are available, forming a "rewrite-then-edit" process. Furthermore, we propose distilling the rewriting capabilities of LLMs into smaller models to reduce rewriting latency. Our experimental evaluation on the QReCC dataset demonstrates that informative query rewrites can yield substantially improved retrieval performance compared to human rewrites, especially with sparse retrievers.
Dense Text Retrieval based on Pretrained Language Models: A Survey
Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval.
The Expando-Mono-Duo Design Pattern for Text Ranking with Pretrained Sequence-to-Sequence Models
We propose a design pattern for tackling text ranking problems, dubbed "Expando-Mono-Duo", that has been empirically validated for a number of ad hoc retrieval tasks in different domains. At the core, our design relies on pretrained sequence-to-sequence models within a standard multi-stage ranking architecture. "Expando" refers to the use of document expansion techniques to enrich keyword representations of texts prior to inverted indexing. "Mono" and "Duo" refer to components in a reranking pipeline based on a pointwise model and a pairwise model that rerank initial candidates retrieved using keyword search. We present experimental results from the MS MARCO passage and document ranking tasks, the TREC 2020 Deep Learning Track, and the TREC-COVID challenge that validate our design. In all these tasks, we achieve effectiveness that is at or near the state of the art, in some cases using a zero-shot approach that does not exploit any training data from the target task. To support replicability, implementations of our design pattern are open-sourced in the Pyserini IR toolkit and PyGaggle neural reranking library.
Knowledge Navigator: LLM-guided Browsing Framework for Exploratory Search in Scientific Literature
The exponential growth of scientific literature necessitates advanced tools for effective knowledge exploration. We present Knowledge Navigator, a system designed to enhance exploratory search abilities by organizing and structuring the retrieved documents from broad topical queries into a navigable, two-level hierarchy of named and descriptive scientific topics and subtopics. This structured organization provides an overall view of the research themes in a domain, while also enabling iterative search and deeper knowledge discovery within specific subtopics by allowing users to refine their focus and retrieve additional relevant documents. Knowledge Navigator combines LLM capabilities with cluster-based methods to enable an effective browsing method. We demonstrate our approach's effectiveness through automatic and manual evaluations on two novel benchmarks, CLUSTREC-COVID and SCITOC. Our code, prompts, and benchmarks are made publicly available.
DIVER: A Multi-Stage Approach for Reasoning-intensive Information Retrieval
Retrieval-augmented generation has achieved strong performance on knowledge-intensive tasks where query-document relevance can be identified through direct lexical or semantic matches. However, many real-world queries involve abstract reasoning, analogical thinking, or multi-step inference, which existing retrievers often struggle to capture. To address this challenge, we present DIVER, a retrieval pipeline tailored for reasoning-intensive information retrieval. DIVER consists of four components: document processing to improve input quality, LLM-driven query expansion via iterative document interaction, a reasoning-enhanced retriever fine-tuned on synthetic multi-domain data with hard negatives, and a pointwise reranker that combines LLM-assigned helpfulness scores with retrieval scores. On the BRIGHT benchmark, DIVER achieves state-of-the-art nDCG@10 scores of 41.6 and 28.9 on original queries, consistently outperforming competitive reasoning-aware models. These results demonstrate the effectiveness of reasoning-aware retrieval strategies in complex real-world tasks. Our code and retrieval model will be released soon.
CRUSH4SQL: Collective Retrieval Using Schema Hallucination For Text2SQL
Existing Text-to-SQL generators require the entire schema to be encoded with the user text. This is expensive or impractical for large databases with tens of thousands of columns. Standard dense retrieval techniques are inadequate for schema subsetting of a large structured database, where the correct semantics of retrieval demands that we rank sets of schema elements rather than individual elements. In response, we propose a two-stage process for effective coverage during retrieval. First, we instruct an LLM to hallucinate a minimal DB schema deemed adequate to answer the query. We use the hallucinated schema to retrieve a subset of the actual schema, by composing the results from multiple dense retrievals. Remarkably, hallucination x2013 generally considered a nuisance x2013 turns out to be actually useful as a bridging mechanism. Since no existing benchmarks exist for schema subsetting on large databases, we introduce three benchmarks. Two semi-synthetic datasets are derived from the union of schemas in two well-known datasets, SPIDER and BIRD, resulting in 4502 and 798 schema elements respectively. A real-life benchmark called SocialDB is sourced from an actual large data warehouse comprising 17844 schema elements. We show that our method1 leads to significantly higher recall than SOTA retrieval-based augmentation methods.
Neural Passage Quality Estimation for Static Pruning
Neural networks -- especially those that use large, pre-trained language models -- have improved search engines in various ways. Most prominently, they can estimate the relevance of a passage or document to a user's query. In this work, we depart from this direction by exploring whether neural networks can effectively predict which of a document's passages are unlikely to be relevant to any query submitted to the search engine. We refer to this query-agnostic estimation of passage relevance as a passage's quality. We find that our novel methods for estimating passage quality allow passage corpora to be pruned considerably while maintaining statistically equivalent effectiveness; our best methods can consistently prune >25% of passages in a corpora, across various retrieval pipelines. Such substantial pruning reduces the operating costs of neural search engines in terms of computing resources, power usage, and carbon footprint -- both when processing queries (thanks to a smaller index size) and when indexing (lightweight models can prune low-quality passages prior to the costly dense or learned sparse encoding step). This work sets the stage for developing more advanced neural "learning-what-to-index" methods.
From Theory to Practice: Plug and Play with Succinct Data Structures
Engineering efficient implementations of compact and succinct structures is a time-consuming and challenging task, since there is no standard library of easy-to- use, highly optimized, and composable components. One consequence is that measuring the practical impact of new theoretical proposals is a difficult task, since older base- line implementations may not rely on the same basic components, and reimplementing from scratch can be very time-consuming. In this paper we present a framework for experimentation with succinct data structures, providing a large set of configurable components, together with tests, benchmarks, and tools to analyze resource requirements. We demonstrate the functionality of the framework by recomposing succinct solutions for document retrieval.
FB-RAG: Improving RAG with Forward and Backward Lookup
The performance of Retrieval Augmented Generation (RAG) systems relies heavily on the retriever quality and the size of the retrieved context. A large enough context ensures that the relevant information is present in the input context for the LLM, but also incorporates irrelevant content that has been shown to confuse the models. On the other hand, a smaller context reduces the irrelevant information, but it often comes at the risk of losing important information necessary to answer the input question. This duality is especially challenging to manage for complex queries that contain little information to retrieve the relevant chunks from the full context. To address this, we present a novel framework, called FB-RAG, which enhances the RAG pipeline by relying on a combination of backward lookup (overlap with the query) and forward lookup (overlap with candidate reasons and answers) to retrieve specific context chunks that are the most relevant for answering the input query. Our evaluations on 9 datasets from two leading benchmarks show that FB-RAG consistently outperforms RAG and Long Context baselines developed recently for these benchmarks. We further show that FB-RAG can improve performance while reducing latency. We perform qualitative analysis of the strengths and shortcomings of our approach, providing specific insights to guide future work.
MixGR: Enhancing Retriever Generalization for Scientific Domain through Complementary Granularity
Recent studies show the growing significance of document retrieval in the generation of LLMs, i.e., RAG, within the scientific domain by bridging their knowledge gap. However, dense retrievers often struggle with domain-specific retrieval and complex query-document relationships, particularly when query segments correspond to various parts of a document. To alleviate such prevalent challenges, this paper introduces MixGR, which improves dense retrievers' awareness of query-document matching across various levels of granularity in queries and documents using a zero-shot approach. MixGR fuses various metrics based on these granularities to a united score that reflects a comprehensive query-document similarity. Our experiments demonstrate that MixGR outperforms previous document retrieval by 24.7%, 9.8%, and 6.9% on nDCG@5 with unsupervised, supervised, and LLM-based retrievers, respectively, averaged on queries containing multiple subqueries from five scientific retrieval datasets. Moreover, the efficacy of two downstream scientific question-answering tasks highlights the advantage of MixGR to boost the application of LLMs in the scientific domain. The code and experimental datasets are available.
Improving Embedding Accuracy for Document Retrieval Using Entity Relationship Maps and Model-Aware Contrastive Sampling
In this paper we present APEX-Embedding-7B (Advanced Processing for Epistemic eXtraction), a 7-billion parameter decoder-only text Feature Extraction Model, specifically designed for Document Retrieval-Augmented Generation (RAG) tasks. Our approach employs two training techniques that yield an emergent improvement in factual focus: (1) Pre-convergence interrupted fine-tuning using Structured Entity Relationship Maps as training data input: designed to shift the model's attention and create a bias towards factual content rather than semantic style - this enhances plain text performance despite not being directly trained for it; and (2) Model-Aware Contrastive Sampling, creating a balanced and evenly distributed collation map of hard and soft negatives directly informed by the base model's competency. This combined methodology yields significant improvements, enhancing plain text query/document pair retrieval to achieve an absolute rank@1 accuracy of 90.86% (an increase of 6.26% compared to the next leading model) in our evaluation, and reducing training data input context size by an average of 37.71% compared to plain text for both queries and document texts. Based on our evaluations, our model establishes a new state-of-the-art standard in text feature extraction for longer context document retrieval tasks.
Citegeist: Automated Generation of Related Work Analysis on the arXiv Corpus
Large Language Models provide significant new opportunities for the generation of high-quality written works. However, their employment in the research community is inhibited by their tendency to hallucinate invalid sources and lack of direct access to a knowledge base of relevant scientific articles. In this work, we present Citegeist: An application pipeline using dynamic Retrieval Augmented Generation (RAG) on the arXiv Corpus to generate a related work section and other citation-backed outputs. For this purpose, we employ a mixture of embedding-based similarity matching, summarization, and multi-stage filtering. To adapt to the continuous growth of the document base, we also present an optimized way of incorporating new and modified papers. To enable easy utilization in the scientific community, we release both, a website (https://citegeist.org), as well as an implementation harness that works with several different LLM implementations.
Large Language Models are Strong Zero-Shot Retriever
In this work, we propose a simple method that applies a large language model (LLM) to large-scale retrieval in zero-shot scenarios. Our method, the Language language model as Retriever (LameR), is built upon no other neural models but an LLM, while breaking brute-force combinations of retrievers with LLMs and lifting the performance of zero-shot retrieval to be very competitive on benchmark datasets. Essentially, we propose to augment a query with its potential answers by prompting LLMs with a composition of the query and the query's in-domain candidates. The candidates, regardless of correct or wrong, are obtained by a vanilla retrieval procedure on the target collection. As a part of the prompts, they are likely to help LLM generate more precise answers by pattern imitation or candidate summarization. Even if all the candidates are wrong, the prompts at least make LLM aware of in-collection patterns and genres. Moreover, due to the low performance of a self-supervised retriever, the LLM-based query augmentation becomes less effective as the retriever bottlenecks the whole pipeline. Therefore, we propose to leverage a non-parametric lexicon-based method (e.g., BM25) as the retrieval module to capture query-document overlap in a literal fashion. As such, LameR makes the retrieval procedure transparent to the LLM, thus circumventing the performance bottleneck.
Meta Knowledge for Retrieval Augmented Large Language Models
Retrieval Augmented Generation (RAG) is a technique used to augment Large Language Models (LLMs) with contextually relevant, time-critical, or domain-specific information without altering the underlying model parameters. However, constructing RAG systems that can effectively synthesize information from large and diverse set of documents remains a significant challenge. We introduce a novel data-centric RAG workflow for LLMs, transforming the traditional retrieve-then-read system into a more advanced prepare-then-rewrite-then-retrieve-then-read framework, to achieve higher domain expert-level understanding of the knowledge base. Our methodology relies on generating metadata and synthetic Questions and Answers (QA) for each document, as well as introducing the new concept of Meta Knowledge Summary (MK Summary) for metadata-based clusters of documents. The proposed innovations enable personalized user-query augmentation and in-depth information retrieval across the knowledge base. Our research makes two significant contributions: using LLMs as evaluators and employing new comparative performance metrics, we demonstrate that (1) using augmented queries with synthetic question matching significantly outperforms traditional RAG pipelines that rely on document chunking (p < 0.01), and (2) meta knowledge-augmented queries additionally significantly improve retrieval precision and recall, as well as the final answers breadth, depth, relevancy, and specificity. Our methodology is cost-effective, costing less than $20 per 2000 research papers using Claude 3 Haiku, and can be adapted with any fine-tuning of either the language or embedding models to further enhance the performance of end-to-end RAG pipelines.
Query Rewriting for Retrieval-Augmented Large Language Models
Large Language Models (LLMs) play powerful, black-box readers in the retrieve-then-read pipeline, making remarkable progress in knowledge-intensive tasks. This work introduces a new framework, Rewrite-Retrieve-Read instead of the previous retrieve-then-read for the retrieval-augmented LLMs from the perspective of the query rewriting. Unlike prior studies focusing on adapting either the retriever or the reader, our approach pays attention to the adaptation of the search query itself, for there is inevitably a gap between the input text and the needed knowledge in retrieval. We first prompt an LLM to generate the query, then use a web search engine to retrieve contexts. Furthermore, to better align the query to the frozen modules, we propose a trainable scheme for our pipeline. A small language model is adopted as a trainable rewriter to cater to the black-box LLM reader. The rewriter is trained using the feedback of the LLM reader by reinforcement learning. Evaluation is conducted on downstream tasks, open-domain QA and multiple-choice QA. Experiments results show consistent performance improvement, indicating that our framework is proven effective and scalable, and brings a new framework for retrieval-augmented LLM.
RepBERT: Contextualized Text Embeddings for First-Stage Retrieval
Although exact term match between queries and documents is the dominant method to perform first-stage retrieval, we propose a different approach, called RepBERT, to represent documents and queries with fixed-length contextualized embeddings. The inner products of query and document embeddings are regarded as relevance scores. On MS MARCO Passage Ranking task, RepBERT achieves state-of-the-art results among all initial retrieval techniques. And its efficiency is comparable to bag-of-words methods.
Structural Text Segmentation of Legal Documents
The growing complexity of legal cases has lead to an increasing interest in legal information retrieval systems that can effectively satisfy user-specific information needs. However, such downstream systems typically require documents to be properly formatted and segmented, which is often done with relatively simple pre-processing steps, disregarding topical coherence of segments. Systems generally rely on representations of individual sentences or paragraphs, which may lack crucial context, or document-level representations, which are too long for meaningful search results. To address this issue, we propose a segmentation system that can predict topical coherence of sequential text segments spanning several paragraphs, effectively segmenting a document and providing a more balanced representation for downstream applications. We build our model on top of popular transformer networks and formulate structural text segmentation as topical change detection, by performing a series of independent classifications that allow for efficient fine-tuning on task-specific data. We crawl a novel dataset consisting of roughly 74,000 online Terms-of-Service documents, including hierarchical topic annotations, which we use for training. Results show that our proposed system significantly outperforms baselines, and adapts well to structural peculiarities of legal documents. We release both data and trained models to the research community for future work.https://github.com/dennlinger/TopicalChange
Learning to Explore and Select for Coverage-Conditioned Retrieval-Augmented Generation
Interactions with large language models (LLMs) often yield long and detailed responses, leveraging both parametric knowledge and retrieval-augmented generation (RAG). While these responses can provide rich insights, they often include redundant or less engaging content not aligned with user interests. This issue becomes apparent when users specify particular subtopics to include or exclude -- termed coverage-conditioned (C^2) queries -- as LLMs often struggle to provide tailored responses. To address this challenge, we investigate the role of query outlines, sequences of subqueries designed to guide LLMs in generating responses that meet specific user requirements. To systematically create and evaluate these outlines, we introduce QTree, a dataset of 10K hierarchical sets of information-seeking subqueries that define structured boundaries for outline creation and evaluation in C^2 scenarios. Additionally, we develop QPlanner, a 7B language model trained to generate customized outlines within boundaries of QTree. We evaluate the effectiveness of the generated outlines through automatic and human judgements, focusing on their impact within retrieval-augmented generation (RAG) systems. Experimental results demonstrate that QPlanner, especially when trained with alignment techniques like DPO, generates higher-quality outlines that better fulfill diverse user needs.
Faster Learned Sparse Retrieval with Block-Max Pruning
Learned sparse retrieval systems aim to combine the effectiveness of contextualized language models with the scalability of conventional data structures such as inverted indexes. Nevertheless, the indexes generated by these systems exhibit significant deviations from the ones that use traditional retrieval models, leading to a discrepancy in the performance of existing query optimizations that were specifically developed for traditional structures. These disparities arise from structural variations in query and document statistics, including sub-word tokenization, leading to longer queries, smaller vocabularies, and different score distributions within posting lists. This paper introduces Block-Max Pruning (BMP), an innovative dynamic pruning strategy tailored for indexes arising in learned sparse retrieval environments. BMP employs a block filtering mechanism to divide the document space into small, consecutive document ranges, which are then aggregated and sorted on the fly, and fully processed only as necessary, guided by a defined safe early termination criterion or based on approximate retrieval requirements. Through rigorous experimentation, we show that BMP substantially outperforms existing dynamic pruning strategies, offering unparalleled efficiency in safe retrieval contexts and improved tradeoffs between precision and efficiency in approximate retrieval tasks.
Event-driven Real-time Retrieval in Web Search
Information retrieval in real-time search presents unique challenges distinct from those encountered in classical web search. These challenges are particularly pronounced due to the rapid change of user search intent, which is influenced by the occurrence and evolution of breaking news events, such as earthquakes, elections, and wars. Previous dense retrieval methods, which primarily focused on static semantic representation, lack the capacity to capture immediate search intent, leading to inferior performance in retrieving the most recent event-related documents in time-sensitive scenarios. To address this issue, this paper expands the query with event information that represents real-time search intent. The Event information is then integrated with the query through a cross-attention mechanism, resulting in a time-context query representation. We further enhance the model's capacity for event representation through multi-task training. Since publicly available datasets such as MS-MARCO do not contain any event information on the query side and have few time-sensitive queries, we design an automatic data collection and annotation pipeline to address this issue, which includes ModelZoo-based Coarse Annotation and LLM-driven Fine Annotation processes. In addition, we share the training tricks such as two-stage training and hard negative sampling. Finally, we conduct a set of offline experiments on a million-scale production dataset to evaluate our approach and deploy an A/B testing in a real online system to verify the performance. Extensive experimental results demonstrate that our proposed approach significantly outperforms existing state-of-the-art baseline methods.
Hybrid Semantic Search: Unveiling User Intent Beyond Keywords
This paper addresses the limitations of traditional keyword-based search in understanding user intent and introduces a novel hybrid search approach that leverages the strengths of non-semantic search engines, Large Language Models (LLMs), and embedding models. The proposed system integrates keyword matching, semantic vector embeddings, and LLM-generated structured queries to deliver highly relevant and contextually appropriate search results. By combining these complementary methods, the hybrid approach effectively captures both explicit and implicit user intent.The paper further explores techniques to optimize query execution for faster response times and demonstrates the effectiveness of this hybrid search model in producing comprehensive and accurate search outcomes.
Improving BERT-based Query-by-Document Retrieval with Multi-Task Optimization
Query-by-document (QBD) retrieval is an Information Retrieval task in which a seed document acts as the query and the goal is to retrieve related documents -- it is particular common in professional search tasks. In this work we improve the retrieval effectiveness of the BERT re-ranker, proposing an extension to its fine-tuning step to better exploit the context of queries. To this end, we use an additional document-level representation learning objective besides the ranking objective when fine-tuning the BERT re-ranker. Our experiments on two QBD retrieval benchmarks show that the proposed multi-task optimization significantly improves the ranking effectiveness without changing the BERT re-ranker or using additional training samples. In future work, the generalizability of our approach to other retrieval tasks should be further investigated.
INSTRUCTIR: A Benchmark for Instruction Following of Information Retrieval Models
Despite the critical need to align search targets with users' intention, retrievers often only prioritize query information without delving into the users' intended search context. Enhancing the capability of retrievers to understand intentions and preferences of users, akin to language model instructions, has the potential to yield more aligned search targets. Prior studies restrict the application of instructions in information retrieval to a task description format, neglecting the broader context of diverse and evolving search scenarios. Furthermore, the prevailing benchmarks utilized for evaluation lack explicit tailoring to assess instruction-following ability, thereby hindering progress in this field. In response to these limitations, we propose a novel benchmark,INSTRUCTIR, specifically designed to evaluate instruction-following ability in information retrieval tasks. Our approach focuses on user-aligned instructions tailored to each query instance, reflecting the diverse characteristics inherent in real-world search scenarios. Through experimental analysis, we observe that retrievers fine-tuned to follow task-style instructions, such as INSTRUCTOR, can underperform compared to their non-instruction-tuned counterparts. This underscores potential overfitting issues inherent in constructing retrievers trained on existing instruction-aware retrieval datasets.
BoolQuestions: Does Dense Retrieval Understand Boolean Logic in Language?
Dense retrieval, which aims to encode the semantic information of arbitrary text into dense vector representations or embeddings, has emerged as an effective and efficient paradigm for text retrieval, consequently becoming an essential component in various natural language processing systems. These systems typically focus on optimizing the embedding space by attending to the relevance of text pairs, while overlooking the Boolean logic inherent in language, which may not be captured by current training objectives. In this work, we first investigate whether current retrieval systems can comprehend the Boolean logic implied in language. To answer this question, we formulate the task of Boolean Dense Retrieval and collect a benchmark dataset, BoolQuestions, which covers complex queries containing basic Boolean logic and corresponding annotated passages. Through extensive experimental results on the proposed task and benchmark dataset, we draw the conclusion that current dense retrieval systems do not fully understand Boolean logic in language, and there is a long way to go to improve our dense retrieval systems. Furthermore, to promote further research on enhancing the understanding of Boolean logic for language models, we explore Boolean operation on decomposed query and propose a contrastive continual training method that serves as a strong baseline for the research community.
Querying Large Language Models with SQL
In many use-cases, information is stored in text but not available in structured data. However, extracting data from natural language text to precisely fit a schema, and thus enable querying, is a challenging task. With the rise of pre-trained Large Language Models (LLMs), there is now an effective solution to store and use information extracted from massive corpora of text documents. Thus, we envision the use of SQL queries to cover a broad range of data that is not captured by traditional databases by tapping the information in LLMs. To ground this vision, we present Galois, a prototype based on a traditional database architecture, but with new physical operators for querying the underlying LLM. The main idea is to execute some operators of the the query plan with prompts that retrieve data from the LLM. For a large class of SQL queries, querying LLMs returns well structured relations, with encouraging qualitative results. Preliminary experimental results make pre-trained LLMs a promising addition to the field of database systems, introducing a new direction for hybrid query processing. However, we pinpoint several research challenges that must be addressed to build a DBMS that exploits LLMs. While some of these challenges necessitate integrating concepts from the NLP literature, others offer novel research avenues for the DB community.
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval
Multi-hop reasoning (i.e., reasoning across two or more documents) is a key ingredient for NLP models that leverage large corpora to exhibit broad knowledge. To retrieve evidence passages, multi-hop models must contend with a fast-growing search space across the hops, represent complex queries that combine multiple information needs, and resolve ambiguity about the best order in which to hop between training passages. We tackle these problems via Baleen, a system that improves the accuracy of multi-hop retrieval while learning robustly from weak training signals in the many-hop setting. To tame the search space, we propose condensed retrieval, a pipeline that summarizes the retrieved passages after each hop into a single compact context. To model complex queries, we introduce a focused late interaction retriever that allows different parts of the same query representation to match disparate relevant passages. Lastly, to infer the hopping dependencies among unordered training passages, we devise latent hop ordering, a weak-supervision strategy in which the trained retriever itself selects the sequence of hops. We evaluate Baleen on retrieval for two-hop question answering and many-hop claim verification, establishing state-of-the-art performance.
Incorporating Legal Structure in Retrieval-Augmented Generation: A Case Study on Copyright Fair Use
This paper presents a domain-specific implementation of Retrieval-Augmented Generation (RAG) tailored to the Fair Use Doctrine in U.S. copyright law. Motivated by the increasing prevalence of DMCA takedowns and the lack of accessible legal support for content creators, we propose a structured approach that combines semantic search with legal knowledge graphs and court citation networks to improve retrieval quality and reasoning reliability. Our prototype models legal precedents at the statutory factor level (e.g., purpose, nature, amount, market effect) and incorporates citation-weighted graph representations to prioritize doctrinally authoritative sources. We use Chain-of-Thought reasoning and interleaved retrieval steps to better emulate legal reasoning. Preliminary testing suggests this method improves doctrinal relevance in the retrieval process, laying groundwork for future evaluation and deployment of LLM-based legal assistance tools.
SymbioticRAG: Enhancing Document Intelligence Through Human-LLM Symbiotic Collaboration
We present SymbioticRAG, a novel framework that fundamentally reimagines Retrieval-Augmented Generation~(RAG) systems by establishing a bidirectional learning relationship between humans and machines. Our approach addresses two critical challenges in current RAG systems: the inherently human-centered nature of relevance determination and users' progression from "unconscious incompetence" in query formulation. SymbioticRAG introduces a two-tier solution where Level 1 enables direct human curation of retrieved content through interactive source document exploration, while Level 2 aims to build personalized retrieval models based on captured user interactions. We implement Level 1 through three key components: (1)~a comprehensive document processing pipeline with specialized models for layout detection, OCR, and extraction of tables, formulas, and figures; (2)~an extensible retriever module supporting multiple retrieval strategies; and (3)~an interactive interface that facilitates both user engagement and interaction data logging. We experiment Level 2 implementation via a retriever strategy incorporated LLM summarized user intention from user interaction logs. To maintain high-quality data preparation, we develop a human-on-the-loop validation interface that improves pipeline output while advancing research in specialized extraction tasks. Evaluation across three scenarios (literature review, geological exploration, and education) demonstrates significant improvements in retrieval relevance and user satisfaction compared to traditional RAG approaches. To facilitate broader research and further advancement of SymbioticRAG Level 2 implementation, we will make our system openly accessible to the research community.
Using clarification questions to improve software developers' Web search
Context: Recent research indicates that Web queries written by software developers are not very successful in retrieving relevant results, performing measurably worse compared to general purpose Web queries. Most approaches up to this point have addressed this problem with software engineering-specific automated query reformulation techniques, which work without developer involvement but are limited by the content of the original query. In other words, these techniques automatically improve the existing query but can not contribute new, previously unmentioned, concepts. Objective: In this paper, we propose a technique to guide software developers in manually improving their own Web search queries. We examine a conversational approach that follows unsuccessful queries with a clarification question aimed at eliciting additional query terms, thus providing to the developer a clear dimension along which the query could be improved. Methods: We describe a set of clarification questions derived from a corpus of software developer queries and a neural approach to recommending them for a newly issued query. Results: Our evaluation indicates that the recommendation technique is accurate, predicting a valid clarification question 80% of the time and outperforms simple baselines, as well as, state-of-the-art Learning To Rank (LTR) baselines. Conclusion: As shown in the experimental results, the described approach is capable at recommending appropriate clarification questions to software developers and considered useful by a sample of developers ranging from novices to experienced professionals.
Boosting Search Engines with Interactive Agents
This paper presents first successful steps in designing search agents that learn meta-strategies for iterative query refinement in information-seeking tasks. Our approach uses machine reading to guide the selection of refinement terms from aggregated search results. Agents are then empowered with simple but effective search operators to exert fine-grained and transparent control over queries and search results. We develop a novel way of generating synthetic search sessions, which leverages the power of transformer-based language models through (self-)supervised learning. We also present a reinforcement learning agent with dynamically constrained actions that learns interactive search strategies from scratch. Our search agents obtain retrieval and answer quality performance comparable to recent neural methods, using only a traditional term-based BM25 ranking function and interpretable discrete reranking and filtering actions.
INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning
Large language models (LLMs) have demonstrated impressive capabilities in various natural language processing tasks. Despite this, their application to information retrieval (IR) tasks is still challenging due to the infrequent occurrence of many IR-specific concepts in natural language. While prompt-based methods can provide task descriptions to LLMs, they often fall short in facilitating comprehensive understanding and execution of IR tasks, thereby limiting LLMs' applicability. To address this gap, in this work, we explore the potential of instruction tuning to enhance LLMs' proficiency in IR tasks. We introduce a novel instruction tuning dataset, INTERS, encompassing 21 tasks across three fundamental IR categories: query understanding, document understanding, and query-document relationship understanding. The data are derived from 43 distinct datasets with manually written templates. Our empirical results reveal that INTERS significantly boosts the performance of various publicly available LLMs, such as LLaMA, Mistral, and Phi, in search-related tasks. Furthermore, we conduct a comprehensive analysis to ascertain the effects of base model selection, instruction design, volume of instructions, and task variety on performance. We make our dataset and the models fine-tuned on it publicly accessible at https://github.com/DaoD/INTERS.
Constructing Datasets for Multi-hop Reading Comprehension Across Documents
Most Reading Comprehension methods limit themselves to queries which can be answered using a single sentence, paragraph, or document. Enabling models to combine disjoint pieces of textual evidence would extend the scope of machine comprehension methods, but currently there exist no resources to train and test this capability. We propose a novel task to encourage the development of models for text understanding across multiple documents and to investigate the limits of existing methods. In our task, a model learns to seek and combine evidence - effectively performing multi-hop (alias multi-step) inference. We devise a methodology to produce datasets for this task, given a collection of query-answer pairs and thematically linked documents. Two datasets from different domains are induced, and we identify potential pitfalls and devise circumvention strategies. We evaluate two previously proposed competitive models and find that one can integrate information across documents. However, both models struggle to select relevant information, as providing documents guaranteed to be relevant greatly improves their performance. While the models outperform several strong baselines, their best accuracy reaches 42.9% compared to human performance at 74.0% - leaving ample room for improvement.
Holistic Reasoning with Long-Context LMs: A Benchmark for Database Operations on Massive Textual Data
The rapid increase in textual information means we need more efficient methods to sift through, organize, and understand it all. While retrieval-augmented generation (RAG) models excel in accessing information from large document collections, they struggle with complex tasks that require aggregation and reasoning over information spanning across multiple documents--what we call holistic reasoning. Long-context language models (LCLMs) have great potential for managing large-scale documents, but their holistic reasoning capabilities remain unclear. In this work, we introduce HoloBench, a novel framework that brings database reasoning operations into text-based contexts, making it easier to systematically evaluate how LCLMs handle holistic reasoning across large documents. Our approach adjusts key factors such as context length, information density, distribution of information, and query complexity to evaluate LCLMs comprehensively. Our experiments show that the amount of information in the context has a bigger influence on LCLM performance than the actual context length. Furthermore, the complexity of queries affects performance more than the amount of information, particularly for different types of queries. Interestingly, queries that involve finding maximum or minimum values are easier for LCLMs and are less affected by context length, even though they pose challenges for RAG systems. However, tasks requiring the aggregation of multiple pieces of information show a noticeable drop in accuracy as context length increases. Additionally, we find that while grouping relevant information generally improves performance, the optimal positioning varies across models. Our findings surface both the advancements and the ongoing challenges in achieving a holistic understanding of long contexts.
RoundTable: Leveraging Dynamic Schema and Contextual Autocomplete for Enhanced Query Precision in Tabular Question Answering
With advancements in Large Language Models (LLMs), a major use case that has emerged is querying databases in plain English, translating user questions into executable database queries, which has improved significantly. However, real-world datasets often feature a vast array of attributes and complex values, complicating the LLMs task of accurately identifying relevant columns or values from natural language queries. Traditional methods cannot fully relay the datasets size and complexity to the LLM. To address these challenges, we propose a novel framework that leverages Full-Text Search (FTS) on the input table. This approach not only enables precise detection of specific values and columns but also narrows the search space for language models, thereby enhancing query accuracy. Additionally, it supports a custom auto-complete feature that suggests queries based on the data in the table. This integration significantly refines the interaction between the user and complex datasets, offering a sophisticated solution to the limitations faced by current table querying capabilities. This work is accompanied by an application for both Mac and Windows platforms, which readers can try out themselves on their own data.
Augmenting Document Representations for Dense Retrieval with Interpolation and Perturbation
Dense retrieval models, which aim at retrieving the most relevant document for an input query on a dense representation space, have gained considerable attention for their remarkable success. Yet, dense models require a vast amount of labeled training data for notable performance, whereas it is often challenging to acquire query-document pairs annotated by humans. To tackle this problem, we propose a simple but effective Document Augmentation for dense Retrieval (DAR) framework, which augments the representations of documents with their interpolation and perturbation. We validate the performance of DAR on retrieval tasks with two benchmark datasets, showing that the proposed DAR significantly outperforms relevant baselines on the dense retrieval of both the labeled and unlabeled documents.
RichRAG: Crafting Rich Responses for Multi-faceted Queries in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) effectively addresses issues of static knowledge and hallucination in large language models. Existing studies mostly focus on question scenarios with clear user intents and concise answers. However, it is prevalent that users issue broad, open-ended queries with diverse sub-intents, for which they desire rich and long-form answers covering multiple relevant aspects. To tackle this important yet underexplored problem, we propose a novel RAG framework, namely RichRAG. It includes a sub-aspect explorer to identify potential sub-aspects of input questions, a multi-faceted retriever to build a candidate pool of diverse external documents related to these sub-aspects, and a generative list-wise ranker, which is a key module to provide the top-k most valuable documents for the final generator. These ranked documents sufficiently cover various query aspects and are aware of the generator's preferences, hence incentivizing it to produce rich and comprehensive responses for users. The training of our ranker involves a supervised fine-tuning stage to ensure the basic coverage of documents, and a reinforcement learning stage to align downstream LLM's preferences to the ranking of documents. Experimental results on two publicly available datasets prove that our framework effectively and efficiently provides comprehensive and satisfying responses to users.
CHESS: Contextual Harnessing for Efficient SQL Synthesis
Utilizing large language models (LLMs) for transforming natural language questions into SQL queries (text-to-SQL) is a promising yet challenging approach, particularly when applied to real-world databases with complex and extensive schemas. In particular, effectively incorporating data catalogs and database values for SQL generation remains an obstacle, leading to suboptimal solutions. We address this problem by proposing a new pipeline that effectively retrieves relevant data and context, selects an efficient schema, and synthesizes correct and efficient SQL queries. To increase retrieval precision, our pipeline introduces a hierarchical retrieval method leveraging model-generated keywords, locality-sensitive hashing indexing, and vector databases. Additionally, we have developed an adaptive schema pruning technique that adjusts based on the complexity of the problem and the model's context size. Our approach generalizes to both frontier proprietary models like GPT-4 and open-source models such as Llama-3-70B. Through a series of ablation studies, we demonstrate the effectiveness of each component of our pipeline and its impact on the end-to-end performance. Our method achieves new state-of-the-art performance on the cross-domain challenging BIRD dataset.
IRLab@iKAT24: Learned Sparse Retrieval with Multi-aspect LLM Query Generation for Conversational Search
The Interactive Knowledge Assistant Track (iKAT) 2024 focuses on advancing conversational assistants, able to adapt their interaction and responses from personalized user knowledge. The track incorporates a Personal Textual Knowledge Base (PTKB) alongside Conversational AI tasks, such as passage ranking and response generation. Query Rewrite being an effective approach for resolving conversational context, we explore Large Language Models (LLMs), as query rewriters. Specifically, our submitted runs explore multi-aspect query generation using the MQ4CS framework, which we further enhance with Learned Sparse Retrieval via the SPLADE architecture, coupled with robust cross-encoder models. We also propose an alternative to the previous interleaving strategy, aggregating multiple aspects during the reranking phase. Our findings indicate that multi-aspect query generation is effective in enhancing performance when integrated with advanced retrieval and reranking models. Our results also lead the way for better personalization in Conversational Search, relying on LLMs to integrate personalization within query rewrite, and outperforming human rewrite performance.
Adaptive Document Retrieval for Deep Question Answering
State-of-the-art systems in deep question answering proceed as follows: (1) an initial document retrieval selects relevant documents, which (2) are then processed by a neural network in order to extract the final answer. Yet the exact interplay between both components is poorly understood, especially concerning the number of candidate documents that should be retrieved. We show that choosing a static number of documents -- as used in prior research -- suffers from a noise-information trade-off and yields suboptimal results. As a remedy, we propose an adaptive document retrieval model. This learns the optimal candidate number for document retrieval, conditional on the size of the corpus and the query. We report extensive experimental results showing that our adaptive approach outperforms state-of-the-art methods on multiple benchmark datasets, as well as in the context of corpora with variable sizes.
Incorporating Relevance Feedback for Information-Seeking Retrieval using Few-Shot Document Re-Ranking
Pairing a lexical retriever with a neural re-ranking model has set state-of-the-art performance on large-scale information retrieval datasets. This pipeline covers scenarios like question answering or navigational queries, however, for information-seeking scenarios, users often provide information on whether a document is relevant to their query in form of clicks or explicit feedback. Therefore, in this work, we explore how relevance feedback can be directly integrated into neural re-ranking models by adopting few-shot and parameter-efficient learning techniques. Specifically, we introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant. Further, we explore Cross-Encoder models that we pre-train using meta-learning and subsequently fine-tune for each query, training only on the feedback documents. To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario. Extensive experiments demonstrate that integrating relevance feedback directly in neural re-ranking models improves their performance, and fusing lexical ranking with our best performing neural re-ranker outperforms all other methods by 5.2 nDCG@20.
FrugalRAG: Learning to retrieve and reason for multi-hop QA
We consider the problem of answering complex questions, given access to a large unstructured document corpus. The de facto approach to solving the problem is to leverage language models that (iteratively) retrieve and reason through the retrieved documents, until the model has sufficient information to generate an answer. Attempts at improving this approach focus on retrieval-augmented generation (RAG) metrics such as accuracy and recall and can be categorized into two types: (a) fine-tuning on large question answering (QA) datasets augmented with chain-of-thought traces, and (b) leveraging RL-based fine-tuning techniques that rely on question-document relevance signals. However, efficiency in the number of retrieval searches is an equally important metric, which has received less attention. In this work, we show that: (1) Large-scale fine-tuning is not needed to improve RAG metrics, contrary to popular claims in recent literature. Specifically, a standard ReAct pipeline with improved prompts can outperform state-of-the-art methods on benchmarks such as HotPotQA. (2) Supervised and RL-based fine-tuning can help RAG from the perspective of frugality, i.e., the latency due to number of searches at inference time. For example, we show that we can achieve competitive RAG metrics at nearly half the cost (in terms of number of searches) on popular RAG benchmarks, using the same base model, and at a small training cost (1000 examples).
Exploring the Viability of Synthetic Query Generation for Relevance Prediction
Query-document relevance prediction is a critical problem in Information Retrieval systems. This problem has increasingly been tackled using (pretrained) transformer-based models which are finetuned using large collections of labeled data. However, in specialized domains such as e-commerce and healthcare, the viability of this approach is limited by the dearth of large in-domain data. To address this paucity, recent methods leverage these powerful models to generate high-quality task and domain-specific synthetic data. Prior work has largely explored synthetic data generation or query generation (QGen) for Question-Answering (QA) and binary (yes/no) relevance prediction, where for instance, the QGen models are given a document, and trained to generate a query relevant to that document. However in many problems, we have a more fine-grained notion of relevance than a simple yes/no label. Thus, in this work, we conduct a detailed study into how QGen approaches can be leveraged for nuanced relevance prediction. We demonstrate that -- contrary to claims from prior works -- current QGen approaches fall short of the more conventional cross-domain transfer-learning approaches. Via empirical studies spanning 3 public e-commerce benchmarks, we identify new shortcomings of existing QGen approaches -- including their inability to distinguish between different grades of relevance. To address this, we introduce label-conditioned QGen models which incorporates knowledge about the different relevance. While our experiments demonstrate that these modifications help improve performance of QGen techniques, we also find that QGen approaches struggle to capture the full nuance of the relevance label space and as a result the generated queries are not faithful to the desired relevance label.
A Comprehensive Survey of Retrieval-Augmented Generation (RAG): Evolution, Current Landscape and Future Directions
This paper presents a comprehensive study of Retrieval-Augmented Generation (RAG), tracing its evolution from foundational concepts to the current state of the art. RAG combines retrieval mechanisms with generative language models to enhance the accuracy of outputs, addressing key limitations of LLMs. The study explores the basic architecture of RAG, focusing on how retrieval and generation are integrated to handle knowledge-intensive tasks. A detailed review of the significant technological advancements in RAG is provided, including key innovations in retrieval-augmented language models and applications across various domains such as question-answering, summarization, and knowledge-based tasks. Recent research breakthroughs are discussed, highlighting novel methods for improving retrieval efficiency. Furthermore, the paper examines ongoing challenges such as scalability, bias, and ethical concerns in deployment. Future research directions are proposed, focusing on improving the robustness of RAG models, expanding the scope of application of RAG models, and addressing societal implications. This survey aims to serve as a foundational resource for researchers and practitioners in understanding the potential of RAG and its trajectory in natural language processing.
ATLANTIC: Structure-Aware Retrieval-Augmented Language Model for Interdisciplinary Science
Large language models record impressive performance on many natural language processing tasks. However, their knowledge capacity is limited to the pretraining corpus. Retrieval augmentation offers an effective solution by retrieving context from external knowledge sources to complement the language model. However, existing retrieval augmentation techniques ignore the structural relationships between these documents. Furthermore, retrieval models are not explored much in scientific tasks, especially in regard to the faithfulness of retrieved documents. In this paper, we propose a novel structure-aware retrieval augmented language model that accommodates document structure during retrieval augmentation. We create a heterogeneous document graph capturing multiple types of relationships (e.g., citation, co-authorship, etc.) that connect documents from more than 15 scientific disciplines (e.g., Physics, Medicine, Chemistry, etc.). We train a graph neural network on the curated document graph to act as a structural encoder for the corresponding passages retrieved during the model pretraining. Particularly, along with text embeddings of the retrieved passages, we obtain structural embeddings of the documents (passages) and fuse them together before feeding them to the language model. We evaluate our model extensively on various scientific benchmarks that include science question-answering and scientific document classification tasks. Experimental results demonstrate that structure-aware retrieval improves retrieving more coherent, faithful and contextually relevant passages, while showing a comparable performance in the overall accuracy.
Collapse of Dense Retrievers: Short, Early, and Literal Biases Outranking Factual Evidence
Dense retrieval models are commonly used in Information Retrieval (IR) applications, such as Retrieval-Augmented Generation (RAG). Since they often serve as the first step in these systems, their robustness is critical to avoid failures. In this work, by repurposing a relation extraction dataset (e.g. Re-DocRED), we design controlled experiments to quantify the impact of heuristic biases, such as favoring shorter documents, in retrievers like Dragon+ and Contriever. Our findings reveal significant vulnerabilities: retrievers often rely on superficial patterns like over-prioritizing document beginnings, shorter documents, repeated entities, and literal matches. Additionally, they tend to overlook whether the document contains the query's answer, lacking deep semantic understanding. Notably, when multiple biases combine, models exhibit catastrophic performance degradation, selecting the answer-containing document in less than 3% of cases over a biased document without the answer. Furthermore, we show that these biases have direct consequences for downstream applications like RAG, where retrieval-preferred documents can mislead LLMs, resulting in a 34% performance drop than not providing any documents at all.
Improving Retrieval-Augmented Large Language Models via Data Importance Learning
Retrieval augmentation enables large language models to take advantage of external knowledge, for example on tasks like question answering and data imputation. However, the performance of such retrieval-augmented models is limited by the data quality of their underlying retrieval corpus. In this paper, we propose an algorithm based on multilinear extension for evaluating the data importance of retrieved data points. There are exponentially many terms in the multilinear extension, and one key contribution of this paper is a polynomial time algorithm that computes exactly, given a retrieval-augmented model with an additive utility function and a validation set, the data importance of data points in the retrieval corpus using the multilinear extension of the model's utility function. We further proposed an even more efficient ({\epsilon}, {\delta})-approximation algorithm. Our experimental results illustrate that we can enhance the performance of large language models by only pruning or reweighting the retrieval corpus, without requiring further training. For some tasks, this even allows a small model (e.g., GPT-JT), augmented with a search engine API, to outperform GPT-3.5 (without retrieval augmentation). Moreover, we show that weights based on multilinear extension can be computed efficiently in practice (e.g., in less than ten minutes for a corpus with 100 million elements).
UiS-IAI@LiveRAG: Retrieval-Augmented Information Nugget-Based Generation of Responses
Retrieval-augmented generation (RAG) faces challenges related to factual correctness, source attribution, and response completeness. The LiveRAG Challenge hosted at SIGIR'25 aims to advance RAG research using a fixed corpus and a shared, open-source LLM. We propose a modular pipeline that operates on information nuggets-minimal, atomic units of relevant information extracted from retrieved documents. This multistage pipeline encompasses query rewriting, passage retrieval and reranking, nugget detection and clustering, cluster ranking and summarization, and response fluency enhancement. This design inherently promotes grounding in specific facts, facilitates source attribution, and ensures maximum information inclusion within length constraints. In this challenge, we extend our focus to also address the retrieval component of RAG, building upon our prior work on multi-faceted query rewriting. Furthermore, for augmented generation, we concentrate on improving context curation capabilities, maximizing the breadth of information covered in the response while ensuring pipeline efficiency. Our results show that combining original queries with a few sub-query rewrites boosts recall, while increasing the number of documents used for reranking and generation beyond a certain point reduces effectiveness, without improving response quality.
Benchmarking Deep Search over Heterogeneous Enterprise Data
We present a new benchmark for evaluating Deep Search--a realistic and complex form of retrieval-augmented generation (RAG) that requires source-aware, multi-hop reasoning over diverse, sparsed, but related sources. These include documents, meeting transcripts, Slack messages, GitHub, and URLs, which vary in structure and often contain human-to-human interactions. We build it using a synthetic data pipeline that simulates business workflows across product planning, development, and support stages, generating interconnected content with realistic noise and multi-hop questions with guaranteed ground-truth answers. We release our benchmark with both answerable and unanswerable queries, and retrieval pool of 39,190 enterprise artifacts, enabling fine-grained evaluation of long-context LLM and RAG systems. Our experiments reveal that even the best-performing agentic RAG methods achieve an average performance score of 32.96 on our benchmark. With further analysis, we highlight retrieval as the main bottleneck: existing methods struggle to conduct deep searches and retrieve all necessary evidence. Consequently, they often reason over partial context, leading to significant performance degradation.
PRISM: Fine-Grained Paper-to-Paper Retrieval with Multi-Aspect-Aware Query Optimization
Scientific paper retrieval, particularly framed as document-to-document retrieval, aims to identify relevant papers in response to a long-form query paper, rather than a short query string. Previous approaches to this task have focused on abstracts, embedding them into dense vectors as surrogates for full documents and calculating similarity across them, although abstracts provide only sparse and high-level summaries. To address this, we propose PRISM, a novel document-to-document retrieval method that introduces multiple, fine-grained representations for both the query and candidate papers. In particular, each query paper is decomposed into multiple aspect-specific views and individually embedded, which are then matched against candidate papers similarity segmented to consider their multifaceted dimensions. Moreover, we present SciFullBench, a novel benchmark in which the complete and segmented context of full papers for both queries and candidates is available. Then, experimental results show that PRISM improves performance by an average of 4.3% over existing retrieval baselines.
Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems
Retrieval-augmented generation (RAG) techniques leverage the in-context learning capabilities of large language models (LLMs) to produce more accurate and relevant responses. Originating from the simple 'retrieve-then-read' approach, the RAG framework has evolved into a highly flexible and modular paradigm. A critical component, the Query Rewriter module, enhances knowledge retrieval by generating a search-friendly query. This method aligns input questions more closely with the knowledge base. Our research identifies opportunities to enhance the Query Rewriter module to Query Rewriter+ by generating multiple queries to overcome the Information Plateaus associated with a single query and by rewriting questions to eliminate Ambiguity, thereby clarifying the underlying intent. We also find that current RAG systems exhibit issues with Irrelevant Knowledge; to overcome this, we propose the Knowledge Filter. These two modules are both based on the instruction-tuned Gemma-2B model, which together enhance response quality. The final identified issue is Redundant Retrieval; we introduce the Memory Knowledge Reservoir and the Retriever Trigger to solve this. The former supports the dynamic expansion of the RAG system's knowledge base in a parameter-free manner, while the latter optimizes the cost for accessing external knowledge, thereby improving resource utilization and response efficiency. These four RAG modules synergistically improve the response quality and efficiency of the RAG system. The effectiveness of these modules has been validated through experiments and ablation studies across six common QA datasets. The source code can be accessed at https://github.com/Ancientshi/ERM4.
Improving Tool Retrieval by Leveraging Large Language Models for Query Generation
Using tools by Large Language Models (LLMs) is a promising avenue to extend their reach beyond language or conversational settings. The number of tools can scale to thousands as they enable accessing sensory information, fetching updated factual knowledge, or taking actions in the real world. In such settings, in-context learning by providing a short list of relevant tools in the prompt is a viable approach. To retrieve relevant tools, various approaches have been suggested, ranging from simple frequency-based matching to dense embedding-based semantic retrieval. However, such approaches lack the contextual and common-sense understanding required to retrieve the right tools for complex user requests. Rather than increasing the complexity of the retrieval component itself, we propose leveraging LLM understanding to generate a retrieval query. Then, the generated query is embedded and used to find the most relevant tools via a nearest-neighbor search. We investigate three approaches for query generation: zero-shot prompting, supervised fine-tuning on tool descriptions, and alignment learning by iteratively optimizing a reward metric measuring retrieval performance. By conducting extensive experiments on a dataset covering complex and multi-tool scenarios, we show that leveraging LLMs for query generation improves the retrieval for in-domain (seen tools) and out-of-domain (unseen tools) settings.
FinCPRG: A Bidirectional Generation Pipeline for Hierarchical Queries and Rich Relevance in Financial Chinese Passage Retrieval
In recent years, large language models (LLMs) have demonstrated significant potential in constructing passage retrieval datasets. However, existing methods still face limitations in expressing cross-doc query needs and controlling annotation quality. To address these issues, this paper proposes a bidirectional generation pipeline, which aims to generate 3-level hierarchical queries for both intra-doc and cross-doc scenarios and mine additional relevance labels on top of direct mapping annotation. The pipeline introduces two query generation methods: bottom-up from single-doc text and top-down from multi-doc titles. The bottom-up method uses LLMs to disassemble and generate structured queries at both sentence-level and passage-level simultaneously from intra-doc passages. The top-down approach incorporates three key financial elements--industry, topic, and time--to divide report titles into clusters and prompts LLMs to generate topic-level queries from each cluster. For relevance annotation, our pipeline not only relies on direct mapping annotation from the generation relationship but also implements an indirect positives mining method to enrich the relevant query-passage pairs. Using this pipeline, we constructed a Financial Passage Retrieval Generated dataset (FinCPRG) from almost 1.3k Chinese financial research reports, which includes hierarchical queries and rich relevance labels. Through evaluations of mined relevance labels, benchmarking and training experiments, we assessed the quality of FinCPRG and validated its effectiveness as a passage retrieval dataset for both training and benchmarking.
Millions of GeAR-s: Extending GraphRAG to Millions of Documents
Recent studies have explored graph-based approaches to retrieval-augmented generation, leveraging structured or semi-structured information -- such as entities and their relations extracted from documents -- to enhance retrieval. However, these methods are typically designed to address specific tasks, such as multi-hop question answering and query-focused summarisation, and therefore, there is limited evidence of their general applicability across broader datasets. In this paper, we aim to adapt a state-of-the-art graph-based RAG solution: GeAR and explore its performance and limitations on the SIGIR 2025 LiveRAG Challenge.
Conversational Recommendation as Retrieval: A Simple, Strong Baseline
Conversational recommendation systems (CRS) aim to recommend suitable items to users through natural language conversation. However, most CRS approaches do not effectively utilize the signal provided by these conversations. They rely heavily on explicit external knowledge e.g., knowledge graphs to augment the models' understanding of the items and attributes, which is quite hard to scale. To alleviate this, we propose an alternative information retrieval (IR)-styled approach to the CRS item recommendation task, where we represent conversations as queries and items as documents to be retrieved. We expand the document representation used for retrieval with conversations from the training set. With a simple BM25-based retriever, we show that our task formulation compares favorably with much more complex baselines using complex external knowledge on a popular CRS benchmark. We demonstrate further improvements using user-centric modeling and data augmentation to counter the cold start problem for CRSs.
Unsupervised Matching of Data and Text
Entity resolution is a widely studied problem with several proposals to match records across relations. Matching textual content is a widespread task in many applications, such as question answering and search. While recent methods achieve promising results for these two tasks, there is no clear solution for the more general problem of matching textual content and structured data. We introduce a framework that supports this new task in an unsupervised setting for any pair of corpora, being relational tables or text documents. Our method builds a fine-grained graph over the content of the corpora and derives word embeddings to represent the objects to match in a low dimensional space. The learned representation enables effective and efficient matching at different granularity, from relational tuples to text sentences and paragraphs. Our flexible framework can exploit pre-trained resources, but it does not depends on their existence and achieves better quality performance in matching content when the vocabulary is domain specific. We also introduce optimizations in the graph creation process with an "expand and compress" approach that first identifies new valid relationships across elements, to improve matching, and then prunes nodes and edges, to reduce the graph size. Experiments on real use cases and public datasets show that our framework produces embeddings that outperform word embeddings and fine-tuned language models both in results' quality and in execution times.
Structure and Semantics Preserving Document Representations
Retrieving relevant documents from a corpus is typically based on the semantic similarity between the document content and query text. The inclusion of structural relationship between documents can benefit the retrieval mechanism by addressing semantic gaps. However, incorporating these relationships requires tractable mechanisms that balance structure with semantics and take advantage of the prevalent pre-train/fine-tune paradigm. We propose here a holistic approach to learning document representations by integrating intra-document content with inter-document relations. Our deep metric learning solution analyzes the complex neighborhood structure in the relationship network to efficiently sample similar/dissimilar document pairs and defines a novel quintuplet loss function that simultaneously encourages document pairs that are semantically relevant to be closer and structurally unrelated to be far apart in the representation space. Furthermore, the separation margins between the documents are varied flexibly to encode the heterogeneity in relationship strengths. The model is fully fine-tunable and natively supports query projection during inference. We demonstrate that it outperforms competing methods on multiple datasets for document retrieval tasks.
How Does Generative Retrieval Scale to Millions of Passages?
Popularized by the Differentiable Search Index, the emerging paradigm of generative retrieval re-frames the classic information retrieval problem into a sequence-to-sequence modeling task, forgoing external indices and encoding an entire document corpus within a single Transformer. Although many different approaches have been proposed to improve the effectiveness of generative retrieval, they have only been evaluated on document corpora on the order of 100k in size. We conduct the first empirical study of generative retrieval techniques across various corpus scales, ultimately scaling up to the entire MS MARCO passage ranking task with a corpus of 8.8M passages and evaluating model sizes up to 11B parameters. We uncover several findings about scaling generative retrieval to millions of passages; notably, the central importance of using synthetic queries as document representations during indexing, the ineffectiveness of existing proposed architecture modifications when accounting for compute cost, and the limits of naively scaling model parameters with respect to retrieval performance. While we find that generative retrieval is competitive with state-of-the-art dual encoders on small corpora, scaling to millions of passages remains an important and unsolved challenge. We believe these findings will be valuable for the community to clarify the current state of generative retrieval, highlight the unique challenges, and inspire new research directions.
Leveraging Inter-Chunk Interactions for Enhanced Retrieval in Large Language Model-Based Question Answering
Retrieving external knowledge and prompting large language models with relevant information is an effective paradigm to enhance the performance of question-answering tasks. Previous research typically handles paragraphs from external documents in isolation, resulting in a lack of context and ambiguous references, particularly in multi-document and complex tasks. To overcome these challenges, we propose a new retrieval framework IIER, that leverages Inter-chunk Interactions to Enhance Retrieval. This framework captures the internal connections between document chunks by considering three types of interactions: structural, keyword, and semantic. We then construct a unified Chunk-Interaction Graph to represent all external documents comprehensively. Additionally, we design a graph-based evidence chain retriever that utilizes previous paths and chunk interactions to guide the retrieval process. It identifies multiple seed nodes based on the target question and iteratively searches for relevant chunks to gather supporting evidence. This retrieval process refines the context and reasoning chain, aiding the large language model in reasoning and answer generation. Extensive experiments demonstrate that IIER outperforms strong baselines across four datasets, highlighting its effectiveness in improving retrieval and reasoning capabilities.
BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval
Existing retrieval benchmarks primarily consist of information-seeking queries (e.g., aggregated questions from search engines) where keyword or semantic-based retrieval is usually sufficient. However, many complex real-world queries require in-depth reasoning to identify relevant documents that go beyond surface form matching. For example, finding documentation for a coding question requires understanding the logic and syntax of the functions involved. To better benchmark retrieval on such challenging queries, we introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents. BRIGHT is constructed from the 1,398 real-world queries collected from diverse domains (such as economics, psychology, robotics, software engineering, earth sciences, etc.), sourced from naturally occurring or carefully curated human data. Extensive evaluation reveals that even state-of-the-art retrieval models perform poorly on BRIGHT. The leading model on the MTEB leaderboard [38 ], which achieves a score of 59.0 nDCG@10,2 produces a score of nDCG@10 of 18.0 on BRIGHT. We further demonstrate that augmenting queries with Chain-of-Thought reasoning generated by large language models (LLMs) improves performance by up to 12.2 points. Moreover, BRIGHT is robust against data leakage during pretraining of the benchmarked models as we validate by showing similar performance even when documents from the benchmark are included in the training data. We believe that BRIGHT paves the way for future research on retrieval systems in more realistic and challenging settings. Our code and data are available at https://brightbenchmark.github.io.
KITAB: Evaluating LLMs on Constraint Satisfaction for Information Retrieval
We study the ability of state-of-the art models to answer constraint satisfaction queries for information retrieval (e.g., 'a list of ice cream shops in San Diego'). In the past, such queries were considered to be tasks that could only be solved via web-search or knowledge bases. More recently, large language models (LLMs) have demonstrated initial emergent abilities in this task. However, many current retrieval benchmarks are either saturated or do not measure constraint satisfaction. Motivated by rising concerns around factual incorrectness and hallucinations of LLMs, we present KITAB, a new dataset for measuring constraint satisfaction abilities of language models. KITAB consists of book-related data across more than 600 authors and 13,000 queries, and also offers an associated dynamic data collection and constraint verification approach for acquiring similar test data for other authors. Our extended experiments on GPT4 and GPT3.5 characterize and decouple common failure modes across dimensions such as information popularity, constraint types, and context availability. Results show that in the absence of context, models exhibit severe limitations as measured by irrelevant information, factual errors, and incompleteness, many of which exacerbate as information popularity decreases. While context availability mitigates irrelevant information, it is not helpful for satisfying constraints, identifying fundamental barriers to constraint satisfaction. We open source our contributions to foster further research on improving constraint satisfaction abilities of future models.
LitSearch: A Retrieval Benchmark for Scientific Literature Search
Literature search questions, such as "where can I find research on the evaluation of consistency in generated summaries?" pose significant challenges for modern search engines and retrieval systems. These questions often require a deep understanding of research concepts and the ability to reason over entire articles. In this work, we introduce LitSearch, a retrieval benchmark comprising 597 realistic literature search queries about recent ML and NLP papers. LitSearch is constructed using a combination of (1) questions generated by GPT-4 based on paragraphs containing inline citations from research papers and (2) questions about recently published papers, manually written by their authors. All LitSearch questions were manually examined or edited by experts to ensure high quality. We extensively benchmark state-of-the-art retrieval models and also evaluate two LLM-based reranking pipelines. We find a significant performance gap between BM25 and state-of-the-art dense retrievers, with a 24.8% difference in absolute recall@5. The LLM-based reranking strategies further improve the best-performing dense retriever by 4.4%. Additionally, commercial search engines and research tools like Google Search perform poorly on LitSearch, lagging behind the best dense retriever by 32 points. Taken together, these results show that LitSearch is an informative new testbed for retrieval systems while catering to a real-world use case.
GuRE:Generative Query REwriter for Legal Passage Retrieval
Legal Passage Retrieval (LPR) systems are crucial as they help practitioners save time when drafting legal arguments. However, it remains an underexplored avenue. One primary reason is the significant vocabulary mismatch between the query and the target passage. To address this, we propose a simple yet effective method, the Generative query REwriter (GuRE). We leverage the generative capabilities of Large Language Models (LLMs) by training the LLM for query rewriting. "Rewritten queries" help retrievers to retrieve target passages by mitigating vocabulary mismatch. Experimental results show that GuRE significantly improves performance in a retriever-agnostic manner, outperforming all baseline methods. Further analysis reveals that different training objectives lead to distinct retrieval behaviors, making GuRE more suitable than direct retriever fine-tuning for real-world applications. Codes are avaiable at github.com/daehuikim/GuRE.
Query-as-context Pre-training for Dense Passage Retrieval
Recently, methods have been developed to improve the performance of dense passage retrieval by using context-supervised pre-training. These methods simply consider two passages from the same document to be relevant, without taking into account the possibility of weakly correlated pairs. Thus, this paper proposes query-as-context pre-training, a simple yet effective pre-training technique to alleviate the issue. Query-as-context pre-training assumes that the query derived from a passage is more likely to be relevant to that passage and forms a passage-query pair. These passage-query pairs are then used in contrastive or generative context-supervised pre-training. The pre-trained models are evaluated on large-scale passage retrieval benchmarks and out-of-domain zero-shot benchmarks. Experimental results show that query-as-context pre-training brings considerable gains and meanwhile speeds up training, demonstrating its effectiveness and efficiency. Our code will be available at https://github.com/caskcsg/ir/tree/main/cotmae-qc .
Quasar: Datasets for Question Answering by Search and Reading
We present two new large-scale datasets aimed at evaluating systems designed to comprehend a natural language query and extract its answer from a large corpus of text. The Quasar-S dataset consists of 37000 cloze-style (fill-in-the-gap) queries constructed from definitions of software entity tags on the popular website Stack Overflow. The posts and comments on the website serve as the background corpus for answering the cloze questions. The Quasar-T dataset consists of 43000 open-domain trivia questions and their answers obtained from various internet sources. ClueWeb09 serves as the background corpus for extracting these answers. We pose these datasets as a challenge for two related subtasks of factoid Question Answering: (1) searching for relevant pieces of text that include the correct answer to a query, and (2) reading the retrieved text to answer the query. We also describe a retrieval system for extracting relevant sentences and documents from the corpus given a query, and include these in the release for researchers wishing to only focus on (2). We evaluate several baselines on both datasets, ranging from simple heuristics to powerful neural models, and show that these lag behind human performance by 16.4% and 32.1% for Quasar-S and -T respectively. The datasets are available at https://github.com/bdhingra/quasar .
Hypencoder: Hypernetworks for Information Retrieval
The vast majority of retrieval models depend on vector inner products to produce a relevance score between a query and a document. This naturally limits the expressiveness of the relevance score that can be employed. We propose a new paradigm, instead of producing a vector to represent the query we produce a small neural network which acts as a learned relevance function. This small neural network takes in a representation of the document, in this paper we use a single vector, and produces a scalar relevance score. To produce the little neural network we use a hypernetwork, a network that produce the weights of other networks, as our query encoder or as we call it a Hypencoder. Experiments on in-domain search tasks show that Hypencoder is able to significantly outperform strong dense retrieval models and has higher metrics then reranking models and models an order of magnitude larger. Hypencoder is also shown to generalize well to out-of-domain search tasks. To assess the extent of Hypencoder's capabilities, we evaluate on a set of hard retrieval tasks including tip-of-the-tongue retrieval and instruction-following retrieval tasks and find that the performance gap widens substantially compared to standard retrieval tasks. Furthermore, to demonstrate the practicality of our method we implement an approximate search algorithm and show that our model is able to search 8.8M documents in under 60ms.
Large Language Models are Built-in Autoregressive Search Engines
Document retrieval is a key stage of standard Web search engines. Existing dual-encoder dense retrievers obtain representations for questions and documents independently, allowing for only shallow interactions between them. To overcome this limitation, recent autoregressive search engines replace the dual-encoder architecture by directly generating identifiers for relevant documents in the candidate pool. However, the training cost of such autoregressive search engines rises sharply as the number of candidate documents increases. In this paper, we find that large language models (LLMs) can follow human instructions to directly generate URLs for document retrieval. Surprisingly, when providing a few {Query-URL} pairs as in-context demonstrations, LLMs can generate Web URLs where nearly 90\% of the corresponding documents contain correct answers to open-domain questions. In this way, LLMs can be thought of as built-in search engines, since they have not been explicitly trained to map questions to document identifiers. Experiments demonstrate that our method can consistently achieve better retrieval performance than existing retrieval approaches by a significant margin on three open-domain question answering benchmarks, under both zero and few-shot settings. The code for this work can be found at https://github.com/Ziems/llm-url.
LLM-Driven Usefulness Labeling for IR Evaluation
In the information retrieval (IR) domain, evaluation plays a crucial role in optimizing search experiences and supporting diverse user intents. In the recent LLM era, research has been conducted to automate document relevance labels, as these labels have traditionally been assigned by crowd-sourced workers - a process that is both time and consuming and costly. This study focuses on LLM-generated usefulness labels, a crucial evaluation metric that considers the user's search intents and task objectives, an aspect where relevance falls short. Our experiment utilizes task-level, query-level, and document-level features along with user search behavior signals, which are essential in defining the usefulness of a document. Our research finds that (i) pre-trained LLMs can generate moderate usefulness labels by understanding the comprehensive search task session, (ii) pre-trained LLMs perform better judgement in short search sessions when provided with search session contexts. Additionally, we investigated whether LLMs can capture the unique divergence between relevance and usefulness, along with conducting an ablation study to identify the most critical metrics for accurate usefulness label generation. In conclusion, this work explores LLM-generated usefulness labels by evaluating critical metrics and optimizing for practicality in real-world settings.
Retrieving Texts based on Abstract Descriptions
In this work, we aim to connect two research areas: instruction models and retrieval-based models. While instruction-tuned Large Language Models (LLMs) excel at extracting information from text, they are not suitable for semantic retrieval. Similarity search over embedding vectors allows to index and query vectors, but the similarity reflected in the embedding is sub-optimal for many use cases. We identify the task of retrieving sentences based on abstract descriptions of their content. We demonstrate the inadequacy of current text embeddings and propose an alternative model that significantly improves when used in standard nearest neighbor search. The model is trained using positive and negative pairs sourced through prompting an a large language model (LLM). While it is easy to source the training material from an LLM, the retrieval task cannot be performed by the LLM directly. This demonstrates that data from LLMs can be used not only for distilling more efficient specialized models than the original LLM, but also for creating new capabilities not immediately possible using the original model.
Open-World Evaluation for Retrieving Diverse Perspectives
We study retrieving a set of documents that covers various perspectives on a complex and contentious question (e.g., will ChatGPT do more harm than good?). We curate a Benchmark for Retrieval Diversity for Subjective questions (BERDS), where each example consists of a question and diverse perspectives associated with the question, sourced from survey questions and debate websites. On this data, retrievers paired with a corpus are evaluated to surface a document set that contains diverse perspectives. Our framing diverges from most retrieval tasks in that document relevancy cannot be decided by simple string matches to references. Instead, we build a language model based automatic evaluator that decides whether each retrieved document contains a perspective. This allows us to evaluate the performance of three different types of corpus (Wikipedia, web snapshot, and corpus constructed on the fly with retrieved pages from the search engine) paired with retrievers. Retrieving diverse documents remains challenging, with the outputs from existing retrievers covering all perspectives on only 33.74% of the examples. We further study the impact of query expansion and diversity-focused reranking approaches and analyze retriever sycophancy. Together, we lay the foundation for future studies in retrieval diversity handling complex queries.
Query Rewriting via Large Language Models
Query rewriting is one of the most effective techniques for coping with poorly written queries before passing them down to the query optimizer. Manual rewriting is not scalable, as it is error-prone and requires deep expertise. Similarly, traditional query rewriting algorithms can only handle a small subset of queries: rule-based techniques do not generalize to new query patterns and synthesis-based techniques cannot handle complex queries. Fortunately, the rise of Large Language Models (LLMs), equipped with broad general knowledge and advanced reasoning capabilities, has created hopes for solving some of these previously open problems. In this paper, we present GenRewrite, the first holistic system that leverages LLMs for query rewriting. We introduce the notion of Natural Language Rewrite Rules (NLR2s), and use them as hints to the LLM but also a means for transferring knowledge from rewriting one query to another, and thus becoming smarter and more effective over time. We present a novel counterexample-guided technique that iteratively corrects the syntactic and semantic errors in the rewritten query, significantly reducing the LLM costs and the manual effort required for verification. GenRewrite speeds up 22 out of 99 TPC queries (the most complex public benchmark) by more than 2x, which is 2.5x--3.2x higher coverage than state-of-the-art traditional query rewriting and 2.1x higher than the out-of-the-box LLM baseline.
WebExplorer: Explore and Evolve for Training Long-Horizon Web Agents
The paradigm of Large Language Models (LLMs) has increasingly shifted toward agentic applications, where web browsing capabilities are fundamental for retrieving information from diverse online sources. However, existing open-source web agents either demonstrate limited information-seeking abilities on complex tasks or lack transparent implementations. In this work, we identify that the key challenge lies in the scarcity of challenging data for information seeking. To address this limitation, we introduce WebExplorer: a systematic data generation approach using model-based exploration and iterative, long-to-short query evolution. This method creates challenging query-answer pairs that require multi-step reasoning and complex web navigation. By leveraging our curated high-quality dataset, we successfully develop advanced web agent WebExplorer-8B through supervised fine-tuning followed by reinforcement learning. Our model supports 128K context length and up to 100 tool calling turns, enabling long-horizon problem solving. Across diverse information-seeking benchmarks, WebExplorer-8B achieves the state-of-the-art performance at its scale. Notably, as an 8B-sized model, WebExplorer-8B is able to effectively search over an average of 16 turns after RL training, achieving higher accuracy than WebSailor-72B on BrowseComp-en/zh and attaining the best performance among models up to 100B parameters on WebWalkerQA and FRAMES. Beyond these information-seeking tasks, our model also achieves strong generalization on the HLE benchmark even though it is only trained on knowledge-intensive QA data. These results highlight our approach as a practical path toward long-horizon web agents.
Q-PEFT: Query-dependent Parameter Efficient Fine-tuning for Text Reranking with Large Language Models
Parameter Efficient Fine-Tuning (PEFT) methods have been extensively utilized in Large Language Models (LLMs) to improve the down-streaming tasks without the cost of fine-tuing the whole LLMs. Recent studies have shown how to effectively use PEFT for fine-tuning LLMs in ranking tasks with convincing performance; there are some limitations, including the learned prompt being fixed for different documents, overfitting to specific tasks, and low adaptation ability. In this paper, we introduce a query-dependent parameter efficient fine-tuning (Q-PEFT) approach for text reranking to leak the information of the true queries to LLMs and then make the generation of true queries from input documents much easier. Specifically, we utilize the query to extract the top-k tokens from concatenated documents, serving as contextual clues. We further augment Q-PEFT by substituting the retrieval mechanism with a multi-head attention layer to achieve end-to-end training and cover all the tokens in the documents, guiding the LLMs to generate more document-specific synthetic queries, thereby further improving the reranking performance. Extensive experiments are conducted on four public datasets, demonstrating the effectiveness of our proposed approach.
End-to-End Retrieval in Continuous Space
Most text-based information retrieval (IR) systems index objects by words or phrases. These discrete systems have been augmented by models that use embeddings to measure similarity in continuous space. But continuous-space models are typically used just to re-rank the top candidates. We consider the problem of end-to-end continuous retrieval, where standard approximate nearest neighbor (ANN) search replaces the usual discrete inverted index, and rely entirely on distances between learned embeddings. By training simple models specifically for retrieval, with an appropriate model architecture, we improve on a discrete baseline by 8% and 26% (MAP) on two similar-question retrieval tasks. We also discuss the problem of evaluation for retrieval systems, and show how to modify existing pairwise similarity datasets for this purpose.
A Hierarchical Recurrent Encoder-Decoder For Generative Context-Aware Query Suggestion
Users may strive to formulate an adequate textual query for their information need. Search engines assist the users by presenting query suggestions. To preserve the original search intent, suggestions should be context-aware and account for the previous queries issued by the user. Achieving context awareness is challenging due to data sparsity. We present a probabilistic suggestion model that is able to account for sequences of previous queries of arbitrary lengths. Our novel hierarchical recurrent encoder-decoder architecture allows the model to be sensitive to the order of queries in the context while avoiding data sparsity. Additionally, our model can suggest for rare, or long-tail, queries. The produced suggestions are synthetic and are sampled one word at a time, using computationally cheap decoding techniques. This is in contrast to current synthetic suggestion models relying upon machine learning pipelines and hand-engineered feature sets. Results show that it outperforms existing context-aware approaches in a next query prediction setting. In addition to query suggestion, our model is general enough to be used in a variety of other applications.
BioRAG: A RAG-LLM Framework for Biological Question Reasoning
The question-answering system for Life science research, which is characterized by the rapid pace of discovery, evolving insights, and complex interactions among knowledge entities, presents unique challenges in maintaining a comprehensive knowledge warehouse and accurate information retrieval. To address these issues, we introduce BioRAG, a novel Retrieval-Augmented Generation (RAG) with the Large Language Models (LLMs) framework. Our approach starts with parsing, indexing, and segmenting an extensive collection of 22 million scientific papers as the basic knowledge, followed by training a specialized embedding model tailored to this domain. Additionally, we enhance the vector retrieval process by incorporating a domain-specific knowledge hierarchy, which aids in modeling the intricate interrelationships among each query and context. For queries requiring the most current information, BioRAG deconstructs the question and employs an iterative retrieval process incorporated with the search engine for step-by-step reasoning. Rigorous experiments have demonstrated that our model outperforms fine-tuned LLM, LLM with search engines, and other scientific RAG frameworks across multiple life science question-answering tasks.
Beyond Nearest Neighbors: Semantic Compression and Graph-Augmented Retrieval for Enhanced Vector Search
Vector databases typically rely on approximate nearest neighbor (ANN) search to retrieve the top-k closest vectors to a query in embedding space. While effective, this approach often yields semantically redundant results, missing the diversity and contextual richness required by applications such as retrieval-augmented generation (RAG), multi-hop QA, and memory-augmented agents. We introduce a new retrieval paradigm: semantic compression, which aims to select a compact, representative set of vectors that captures the broader semantic structure around a query. We formalize this objective using principles from submodular optimization and information geometry, and show that it generalizes traditional top-k retrieval by prioritizing coverage and diversity. To operationalize this idea, we propose graph-augmented vector retrieval, which overlays semantic graphs (e.g., kNN or knowledge-based links) atop vector spaces to enable multi-hop, context-aware search. We theoretically analyze the limitations of proximity-based retrieval under high-dimensional concentration and highlight how graph structures can improve semantic coverage. Our work outlines a foundation for meaning-centric vector search systems, emphasizing hybrid indexing, diversity-aware querying, and structured semantic retrieval. We make our implementation publicly available to foster future research in this area.
Similarity is Not All You Need: Endowing Retrieval Augmented Generation with Multi Layered Thoughts
In recent years, large language models (LLMs) have made remarkable achievements in various domains. However, the untimeliness and cost of knowledge updates coupled with hallucination issues of LLMs have curtailed their applications in knowledge intensive tasks, where retrieval augmented generation (RAG) can be of help. Nevertheless, existing retrieval augmented models typically use similarity as a bridge between queries and documents and follow a retrieve then read procedure. In this work, we argue that similarity is not always the panacea and totally relying on similarity would sometimes degrade the performance of retrieval augmented generation. To this end, we propose MetRag, a Multi layEred Thoughts enhanced Retrieval Augmented Generation framework. To begin with, beyond existing similarity oriented thought, we embrace a small scale utility model that draws supervision from an LLM for utility oriented thought and further come up with a smarter model by comprehensively combining the similarity and utility oriented thoughts. Furthermore, given the fact that the retrieved document set tends to be huge and using them in isolation makes it difficult to capture the commonalities and characteristics among them, we propose to make an LLM as a task adaptive summarizer to endow retrieval augmented generation with compactness-oriented thought. Finally, with multi layered thoughts from the precedent stages, an LLM is called for knowledge augmented generation. Extensive experiments on knowledge-intensive tasks have demonstrated the superiority of MetRag.
Soft Prompt Tuning for Augmenting Dense Retrieval with Large Language Models
Dense retrieval (DR) converts queries and documents into dense embeddings and measures the similarity between queries and documents in vector space. One of the challenges in DR is the lack of domain-specific training data. While DR models can learn from large-scale public datasets like MS MARCO through transfer learning, evidence shows that not all DR models and domains can benefit from transfer learning equally. Recently, some researchers have resorted to large language models (LLMs) to improve the zero-shot and few-shot DR models. However, the hard prompts or human-written prompts utilized in these works cannot guarantee the good quality of generated weak queries. To tackle this, we propose soft prompt tuning for augmenting DR (SPTAR): For each task, we leverage soft prompt-tuning to optimize a task-specific soft prompt on limited ground truth data and then prompt the LLMs to tag unlabeled documents with weak queries, yielding enough weak document-query pairs to train task-specific dense retrievers. We design a filter to select high-quality example document-query pairs in the prompt to further improve the quality of weak tagged queries. To the best of our knowledge, there is no prior work utilizing soft prompt tuning to augment DR models. The experiments demonstrate that SPTAR outperforms the unsupervised baselines BM25 and the recently proposed LLMs-based augmentation method for DR.
HeteRAG: A Heterogeneous Retrieval-augmented Generation Framework with Decoupled Knowledge Representations
Retrieval-augmented generation (RAG) methods can enhance the performance of LLMs by incorporating retrieved knowledge chunks into the generation process. In general, the retrieval and generation steps usually have different requirements for these knowledge chunks. The retrieval step benefits from comprehensive information to improve retrieval accuracy, whereas excessively long chunks may introduce redundant contextual information, thereby diminishing both the effectiveness and efficiency of the generation process. However, existing RAG methods typically employ identical representations of knowledge chunks for both retrieval and generation, resulting in suboptimal performance. In this paper, we propose a heterogeneous RAG framework (\myname) that decouples the representations of knowledge chunks for retrieval and generation, thereby enhancing the LLMs in both effectiveness and efficiency. Specifically, we utilize short chunks to represent knowledge to adapt the generation step and utilize the corresponding chunk with its contextual information from multi-granular views to enhance retrieval accuracy. We further introduce an adaptive prompt tuning method for the retrieval model to adapt the heterogeneous retrieval augmented generation process. Extensive experiments demonstrate that \myname achieves significant improvements compared to baselines.
Adaptive Two-Phase Finetuning LLMs for Japanese Legal Text Retrieval
Text Retrieval (TR) involves finding and retrieving text-based content relevant to a user's query from a large repository, with applications in real-world scenarios such as legal document retrieval. While most existing studies focus on English, limited work addresses Japanese contexts. In this paper, we introduce a new dataset specifically designed for Japanese legal contexts and propose a novel two-phase pipeline tailored to this domain. In the first phase, the model learns a broad understanding of global contexts, enhancing its generalization and adaptability to diverse queries. In the second phase, the model is fine-tuned to address complex queries specific to legal scenarios. Extensive experiments are conducted to demonstrate the superior performance of our method, which outperforms existing baselines. Furthermore, our pipeline proves effective in English contexts, surpassing comparable baselines on the MS MARCO dataset. We have made our code publicly available on GitHub, and the model checkpoints are accessible via HuggingFace.
Offline Pseudo Relevance Feedback for Efficient and Effective Single-pass Dense Retrieval
Dense retrieval has made significant advancements in information retrieval (IR) by achieving high levels of effectiveness while maintaining online efficiency during a single-pass retrieval process. However, the application of pseudo relevance feedback (PRF) to further enhance retrieval effectiveness results in a doubling of online latency. To address this challenge, this paper presents a single-pass dense retrieval framework that shifts the PRF process offline through the utilization of pre-generated pseudo-queries. As a result, online retrieval is reduced to a single matching with the pseudo-queries, hence providing faster online retrieval. The effectiveness of the proposed approach is evaluated on the standard TREC DL and HARD datasets, and the results demonstrate its promise. Our code is openly available at https://github.com/Rosenberg37/OPRF.
Contrastive Learning of User Behavior Sequence for Context-Aware Document Ranking
Context information in search sessions has proven to be useful for capturing user search intent. Existing studies explored user behavior sequences in sessions in different ways to enhance query suggestion or document ranking. However, a user behavior sequence has often been viewed as a definite and exact signal reflecting a user's behavior. In reality, it is highly variable: user's queries for the same intent can vary, and different documents can be clicked. To learn a more robust representation of the user behavior sequence, we propose a method based on contrastive learning, which takes into account the possible variations in user's behavior sequences. Specifically, we propose three data augmentation strategies to generate similar variants of user behavior sequences and contrast them with other sequences. In so doing, the model is forced to be more robust regarding the possible variations. The optimized sequence representation is incorporated into document ranking. Experiments on two real query log datasets show that our proposed model outperforms the state-of-the-art methods significantly, which demonstrates the effectiveness of our method for context-aware document ranking.
Are Large Language Models Good at Utility Judgments?
Retrieval-augmented generation (RAG) is considered to be a promising approach to alleviate the hallucination issue of large language models (LLMs), and it has received widespread attention from researchers recently. Due to the limitation in the semantic understanding of retrieval models, the success of RAG heavily lies on the ability of LLMs to identify passages with utility. Recent efforts have explored the ability of LLMs to assess the relevance of passages in retrieval, but there has been limited work on evaluating the utility of passages in supporting question answering. In this work, we conduct a comprehensive study about the capabilities of LLMs in utility evaluation for open-domain QA. Specifically, we introduce a benchmarking procedure and collection of candidate passages with different characteristics, facilitating a series of experiments with five representative LLMs. Our experiments reveal that: (i) well-instructed LLMs can distinguish between relevance and utility, and that LLMs are highly receptive to newly generated counterfactual passages. Moreover, (ii) we scrutinize key factors that affect utility judgments in the instruction design. And finally, (iii) to verify the efficacy of utility judgments in practical retrieval augmentation applications, we delve into LLMs' QA capabilities using the evidence judged with utility and direct dense retrieval results. (iv) We propose a k-sampling, listwise approach to reduce the dependency of LLMs on the sequence of input passages, thereby facilitating subsequent answer generation. We believe that the way we formalize and study the problem along with our findings contributes to a critical assessment of retrieval-augmented LLMs. Our code and benchmark can be found at https://github.com/ict-bigdatalab/utility_judgments.
Precise Zero-Shot Dense Retrieval without Relevance Labels
While dense retrieval has been shown effective and efficient across tasks and languages, it remains difficult to create effective fully zero-shot dense retrieval systems when no relevance label is available. In this paper, we recognize the difficulty of zero-shot learning and encoding relevance. Instead, we propose to pivot through Hypothetical Document Embeddings~(HyDE). Given a query, HyDE first zero-shot instructs an instruction-following language model (e.g. InstructGPT) to generate a hypothetical document. The document captures relevance patterns but is unreal and may contain false details. Then, an unsupervised contrastively learned encoder~(e.g. Contriever) encodes the document into an embedding vector. This vector identifies a neighborhood in the corpus embedding space, where similar real documents are retrieved based on vector similarity. This second step ground the generated document to the actual corpus, with the encoder's dense bottleneck filtering out the incorrect details. Our experiments show that HyDE significantly outperforms the state-of-the-art unsupervised dense retriever Contriever and shows strong performance comparable to fine-tuned retrievers, across various tasks (e.g. web search, QA, fact verification) and languages~(e.g. sw, ko, ja).
Ext2Gen: Alignment through Unified Extraction and Generation for Robust Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) enhances LLMs by integrating external knowledge, but generation remains fragile due to the uncertain placement of relevant chunks and retrieval-induced information overload, leading to hallucinations. We propose Ext2Gen, a novel extract-then-generate model that enhances RAG robustness by first extracting query-relevant sentences before generating answers. To optimize this model, we employ preference alignment through pairwise feedback learning, enabling the model to generate robust answers regardless of variations in retrieval results. Extensive experiments demonstrate that Ext2Gen effectively identifies query-relevant sentences with high precision and recall, leading to highly reliable answers. Furthermore, deploying our model in a RAG environment reveals that it not only boosts the performance of the base LLM but also synergizes with advanced retrieval strategies like query expansion. The dataset and model will be released soon.
Promptagator: Few-shot Dense Retrieval From 8 Examples
Much recent research on information retrieval has focused on how to transfer from one task (typically with abundant supervised data) to various other tasks where supervision is limited, with the implicit assumption that it is possible to generalize from one task to all the rest. However, this overlooks the fact that there are many diverse and unique retrieval tasks, each targeting different search intents, queries, and search domains. In this paper, we suggest to work on Few-shot Dense Retrieval, a setting where each task comes with a short description and a few examples. To amplify the power of a few examples, we propose Prompt-base Query Generation for Retriever (Promptagator), which leverages large language models (LLM) as a few-shot query generator, and creates task-specific retrievers based on the generated data. Powered by LLM's generalization ability, Promptagator makes it possible to create task-specific end-to-end retrievers solely based on a few examples {without} using Natural Questions or MS MARCO to train %question generators or dual encoders. Surprisingly, LLM prompting with no more than 8 examples allows dual encoders to outperform heavily engineered models trained on MS MARCO like ColBERT v2 by more than 1.2 nDCG on average on 11 retrieval sets. Further training standard-size re-rankers using the same generated data yields another 5.0 point nDCG improvement. Our studies determine that query generation can be far more effective than previously observed, especially when a small amount of task-specific knowledge is given.
CRAFT Your Dataset: Task-Specific Synthetic Dataset Generation Through Corpus Retrieval and Augmentation
Building high-quality datasets for specialized tasks is a time-consuming and resource-intensive process that often requires specialized domain knowledge. We propose Corpus Retrieval and Augmentation for Fine-Tuning (CRAFT), a method for generating synthetic datasets, given a small number of user-written few-shots that demonstrate the task to be performed. Given the few-shot examples, we use large-scale public web-crawled corpora and similarity-based document retrieval to find other relevant human-written documents. Lastly, instruction-tuned large language models (LLMs) augment the retrieved documents into custom-formatted task samples, which then can be used for fine-tuning. We demonstrate that CRAFT can efficiently generate large-scale task-specific training datasets for four diverse tasks: biology question-answering (QA), medicine QA and commonsense QA as well as summarization. Our experiments show that CRAFT-based models outperform or achieve comparable performance to general LLMs for QA tasks, while CRAFT-based summarization models outperform models trained on human-curated data by 46 preference points.
Corrective Retrieval Augmented Generation
Large language models (LLMs) inevitably exhibit hallucinations since the accuracy of generated texts cannot be secured solely by the parametric knowledge they encapsulate. Although retrieval-augmented generation (RAG) is a practicable complement to LLMs, it relies heavily on the relevance of retrieved documents, raising concerns about how the model behaves if retrieval goes wrong. To this end, we propose the Corrective Retrieval Augmented Generation (CRAG) to improve the robustness of generation. Specifically, a lightweight retrieval evaluator is designed to assess the overall quality of retrieved documents for a query, returning a confidence degree based on which different knowledge retrieval actions can be triggered. Since retrieval from static and limited corpora can only return sub-optimal documents, large-scale web searches are utilized as an extension for augmenting the retrieval results. Besides, a decompose-then-recompose algorithm is designed for retrieved documents to selectively focus on key information and filter out irrelevant information in them. CRAG is plug-and-play and can be seamlessly coupled with various RAG-based approaches. Experiments on four datasets covering short- and long-form generation tasks show that CRAG can significantly improve the performance of RAG-based approaches.
Precise Legal Sentence Boundary Detection for Retrieval at Scale: NUPunkt and CharBoundary
We present NUPunkt and CharBoundary, two sentence boundary detection libraries optimized for high-precision, high-throughput processing of legal text in large-scale applications such as due diligence, e-discovery, and legal research. These libraries address the critical challenges posed by legal documents containing specialized citations, abbreviations, and complex sentence structures that confound general-purpose sentence boundary detectors. Our experimental evaluation on five diverse legal datasets comprising over 25,000 documents and 197,000 annotated sentence boundaries demonstrates that NUPunkt achieves 91.1% precision while processing 10 million characters per second with modest memory requirements (432 MB). CharBoundary models offer balanced and adjustable precision-recall tradeoffs, with the large model achieving the highest F1 score (0.782) among all tested methods. Notably, NUPunkt provides a 29-32% precision improvement over general-purpose tools while maintaining exceptional throughput, processing multi-million document collections in minutes rather than hours. Both libraries run efficiently on standard CPU hardware without requiring specialized accelerators. NUPunkt is implemented in pure Python with zero external dependencies, while CharBoundary relies only on scikit-learn and optional ONNX runtime integration for optimized performance. Both libraries are available under the MIT license, can be installed via PyPI, and can be interactively tested at https://sentences.aleainstitute.ai/. These libraries address critical precision issues in retrieval-augmented generation systems by preserving coherent legal concepts across sentences, where each percentage improvement in precision yields exponentially greater reductions in context fragmentation, creating cascading benefits throughout retrieval pipelines and significantly enhancing downstream reasoning quality.
RankingGPT: Empowering Large Language Models in Text Ranking with Progressive Enhancement
Text ranking is a critical task in various information retrieval applications, and the recent success of Large Language Models (LLMs) in natural language processing has sparked interest in their application to text ranking. These methods primarily involve combining query and candidate documents and leveraging prompt learning to determine query-document relevance using the LLM's output probabilities for specific tokens or by directly generating a ranked list of candidate documents. Although these approaches have demonstrated promise, a noteworthy disparity arises between the training objective of LLMs, which typically centers around next token prediction, and the objective of evaluating query-document relevance. To address this gap and fully leverage LLM potential in text ranking tasks, we propose a progressive multi-stage training strategy. Firstly, we introduce a large-scale weakly supervised dataset of relevance texts to enable the LLMs to acquire the ability to predict relevant tokens without altering their original training objective. Subsequently, we incorporate supervised training to further enhance LLM ranking capability. Our experimental results on multiple benchmarks demonstrate the superior performance of our proposed method compared to previous competitive approaches, both in in-domain and out-of-domain scenarios.
Multivariate Representation Learning for Information Retrieval
Dense retrieval models use bi-encoder network architectures for learning query and document representations. These representations are often in the form of a vector representation and their similarities are often computed using the dot product function. In this paper, we propose a new representation learning framework for dense retrieval. Instead of learning a vector for each query and document, our framework learns a multivariate distribution and uses negative multivariate KL divergence to compute the similarity between distributions. For simplicity and efficiency reasons, we assume that the distributions are multivariate normals and then train large language models to produce mean and variance vectors for these distributions. We provide a theoretical foundation for the proposed framework and show that it can be seamlessly integrated into the existing approximate nearest neighbor algorithms to perform retrieval efficiently. We conduct an extensive suite of experiments on a wide range of datasets, and demonstrate significant improvements compared to competitive dense retrieval models.
AGRaME: Any-Granularity Ranking with Multi-Vector Embeddings
Ranking is a fundamental and popular problem in search. However, existing ranking algorithms usually restrict the granularity of ranking to full passages or require a specific dense index for each desired level of granularity. Such lack of flexibility in granularity negatively affects many applications that can benefit from more granular ranking, such as sentence-level ranking for open-domain question-answering, or proposition-level ranking for attribution. In this work, we introduce the idea of any-granularity ranking, which leverages multi-vector embeddings to rank at varying levels of granularity while maintaining encoding at a single (coarser) level of granularity. We propose a multi-granular contrastive loss for training multi-vector approaches, and validate its utility with both sentences and propositions as ranking units. Finally, we demonstrate the application of proposition-level ranking to post-hoc citation addition in retrieval-augmented generation, surpassing the performance of prompt-driven citation generation.
Summarization-Based Document IDs for Generative Retrieval with Language Models
Generative retrieval (Wang et al., 2022; Tay et al., 2022) is a popular approach for end-to-end document retrieval that directly generates document identifiers given an input query. We introduce summarization-based document IDs, in which each document's ID is composed of an extractive summary or abstractive keyphrases generated by a language model, rather than an integer ID sequence or bags of n-grams as proposed in past work. We find that abstractive, content-based IDs (ACID) and an ID based on the first 30 tokens are very effective in direct comparisons with previous approaches to ID creation. We show that using ACID improves top-10 and top-20 recall by 15.6% and 14.4% (relative) respectively versus the cluster-based integer ID baseline on the MSMARCO 100k retrieval task, and 9.8% and 9.9% respectively on the Wikipedia-based NQ 100k retrieval task. Our results demonstrate the effectiveness of human-readable, natural-language IDs created through summarization for generative retrieval. We also observed that extractive IDs outperformed abstractive IDs on Wikipedia articles in NQ but not the snippets in MSMARCO, which suggests that document characteristics affect generative retrieval performance.
Learning Diverse Document Representations with Deep Query Interactions for Dense Retrieval
In this paper, we propose a new dense retrieval model which learns diverse document representations with deep query interactions. Our model encodes each document with a set of generated pseudo-queries to get query-informed, multi-view document representations. It not only enjoys high inference efficiency like the vanilla dual-encoder models, but also enables deep query-document interactions in document encoding and provides multi-faceted representations to better match different queries. Experiments on several benchmarks demonstrate the effectiveness of the proposed method, out-performing strong dual encoder baselines.The code is available at \url{https://github.com/jordane95/dual-cross-encoder
Evaluating D-MERIT of Partial-annotation on Information Retrieval
Retrieval models are often evaluated on partially-annotated datasets. Each query is mapped to a few relevant texts and the remaining corpus is assumed to be irrelevant. As a result, models that successfully retrieve false negatives are punished in evaluation. Unfortunately, completely annotating all texts for every query is not resource efficient. In this work, we show that using partially-annotated datasets in evaluation can paint a distorted picture. We curate D-MERIT, a passage retrieval evaluation set from Wikipedia, aspiring to contain all relevant passages for each query. Queries describe a group (e.g., ``journals about linguistics'') and relevant passages are evidence that entities belong to the group (e.g., a passage indicating that Language is a journal about linguistics). We show that evaluating on a dataset containing annotations for only a subset of the relevant passages might result in misleading ranking of the retrieval systems and that as more relevant texts are included in the evaluation set, the rankings converge. We propose our dataset as a resource for evaluation and our study as a recommendation for balance between resource-efficiency and reliable evaluation when annotating evaluation sets for text retrieval.
DocReRank: Single-Page Hard Negative Query Generation for Training Multi-Modal RAG Rerankers
Rerankers play a critical role in multimodal Retrieval-Augmented Generation (RAG) by refining ranking of an initial set of retrieved documents. Rerankers are typically trained using hard negative mining, whose goal is to select pages for each query which rank high, but are actually irrelevant. However, this selection process is typically passive and restricted to what the retriever can find in the available corpus, leading to several inherent limitations. These include: limited diversity, negative examples which are often not hard enough, low controllability, and frequent false negatives which harm training. Our paper proposes an alternative approach: Single-Page Hard Negative Query Generation, which goes the other way around. Instead of retrieving negative pages per query, we generate hard negative queries per page. Using an automated LLM-VLM pipeline, and given a page and its positive query, we create hard negatives by rephrasing the query to be as similar as possible in form and context, yet not answerable from the page. This paradigm enables fine-grained control over the generated queries, resulting in diverse, hard, and targeted negatives. It also supports efficient false negative verification. Our experiments show that rerankers trained with data generated using our approach outperform existing models and significantly improve retrieval performance.
Retrieval Augmented Generation (RAG) and Beyond: A Comprehensive Survey on How to Make your LLMs use External Data More Wisely
Large language models (LLMs) augmented with external data have demonstrated remarkable capabilities in completing real-world tasks. Techniques for integrating external data into LLMs, such as Retrieval-Augmented Generation (RAG) and fine-tuning, are gaining increasing attention and widespread application. Nonetheless, the effective deployment of data-augmented LLMs across various specialized fields presents substantial challenges. These challenges encompass a wide range of issues, from retrieving relevant data and accurately interpreting user intent to fully harnessing the reasoning capabilities of LLMs for complex tasks. We believe that there is no one-size-fits-all solution for data-augmented LLM applications. In practice, underperformance often arises from a failure to correctly identify the core focus of a task or because the task inherently requires a blend of multiple capabilities that must be disentangled for better resolution. In this survey, we propose a RAG task categorization method, classifying user queries into four levels based on the type of external data required and primary focus of the task: explicit fact queries, implicit fact queries, interpretable rationale queries, and hidden rationale queries. We define these levels of queries, provide relevant datasets, and summarize the key challenges and most effective techniques for addressing these challenges. Finally, we discuss three main forms of integrating external data into LLMs: context, small model, and fine-tuning, highlighting their respective strengths, limitations, and the types of problems they are suited to solve. This work aims to help readers thoroughly understand and decompose the data requirements and key bottlenecks in building LLM applications, offering solutions to the different challenges and serving as a guide to systematically developing such applications.
Are We on the Right Way for Assessing Document Retrieval-Augmented Generation?
Retrieval-Augmented Generation (RAG) systems using Multimodal Large Language Models (MLLMs) show great promise for complex document understanding, yet their development is critically hampered by inadequate evaluation. Current benchmarks often focus on specific part of document RAG system and use synthetic data with incomplete ground truth and evidence labels, therefore failing to reflect real-world bottlenecks and challenges. To overcome these limitations, we introduce Double-Bench: a new large-scale, multilingual, and multimodal evaluation system that is able to produce fine-grained assessment to each component within document RAG systems. It comprises 3,276 documents (72,880 pages) and 5,168 single- and multi-hop queries across 6 languages and 4 document types with streamlined dynamic update support for potential data contamination issues. Queries are grounded in exhaustively scanned evidence pages and verified by human experts to ensure maximum quality and completeness. Our comprehensive experiments across 9 state-of-the-art embedding models, 4 MLLMs and 4 end-to-end document RAG frameworks demonstrate the gap between text and visual embedding models is narrowing, highlighting the need in building stronger document retrieval models. Our findings also reveal the over-confidence dilemma within current document RAG frameworks that tend to provide answer even without evidence support. We hope our fully open-source Double-Bench provide a rigorous foundation for future research in advanced document RAG systems. We plan to retrieve timely corpus and release new benchmarks on an annual basis.
ChunkRAG: Novel LLM-Chunk Filtering Method for RAG Systems
Retrieval-Augmented Generation (RAG) systems using large language models (LLMs) often generate inaccurate responses due to the retrieval of irrelevant or loosely related information. Existing methods, which operate at the document level, fail to effectively filter out such content. We propose LLM-driven chunk filtering, ChunkRAG, a framework that enhances RAG systems by evaluating and filtering retrieved information at the chunk level. Our approach employs semantic chunking to divide documents into coherent sections and utilizes LLM-based relevance scoring to assess each chunk's alignment with the user's query. By filtering out less pertinent chunks before the generation phase, we significantly reduce hallucinations and improve factual accuracy. Experiments show that our method outperforms existing RAG models, achieving higher accuracy on tasks requiring precise information retrieval. This advancement enhances the reliability of RAG systems, making them particularly beneficial for applications like fact-checking and multi-hop reasoning.
RISE: Leveraging Retrieval Techniques for Summarization Evaluation
Evaluating automatically-generated text summaries is a challenging task. While there have been many interesting approaches, they still fall short of human evaluations. We present RISE, a new approach for evaluating summaries by leveraging techniques from information retrieval. RISE is first trained as a retrieval task using a dual-encoder retrieval setup, and can then be subsequently utilized for evaluating a generated summary given an input document, without gold reference summaries. RISE is especially well suited when working on new datasets where one may not have reference summaries available for evaluation. We conduct comprehensive experiments on the SummEval benchmark (Fabbri et al., 2021) and the results show that RISE has higher correlation with human evaluations compared to many past approaches to summarization evaluation. Furthermore, RISE also demonstrates data-efficiency and generalizability across languages.
Efficient and Interpretable Information Retrieval for Product Question Answering with Heterogeneous Data
Expansion-enhanced sparse lexical representation improves information retrieval (IR) by minimizing vocabulary mismatch problems during lexical matching. In this paper, we explore the potential of jointly learning dense semantic representation and combining it with the lexical one for ranking candidate information. We present a hybrid information retrieval mechanism that maximizes lexical and semantic matching while minimizing their shortcomings. Our architecture consists of dual hybrid encoders that independently encode queries and information elements. Each encoder jointly learns a dense semantic representation and a sparse lexical representation augmented by a learnable term expansion of the corresponding text through contrastive learning. We demonstrate the efficacy of our model in single-stage ranking of a benchmark product question-answering dataset containing the typical heterogeneous information available on online product pages. Our evaluation demonstrates that our hybrid approach outperforms independently trained retrievers by 10.95% (sparse) and 2.7% (dense) in MRR@5 score. Moreover, our model offers better interpretability and performs comparably to state-of-the-art cross encoders while reducing response time by 30% (latency) and cutting computational load by approximately 38% (FLOPs).
MSRS: Evaluating Multi-Source Retrieval-Augmented Generation
Retrieval-augmented systems are typically evaluated in settings where information required to answer the query can be found within a single source or the answer is short-form or factoid-based. However, many real-world applications demand the ability to integrate and summarize information scattered across multiple sources, where no single source is sufficient to respond to the user's question. In such settings, the retrieval component of a RAG pipeline must recognize a variety of relevance signals, and the generation component must connect and synthesize information across multiple sources. We present a scalable framework for constructing evaluation benchmarks that challenge RAG systems to integrate information across distinct sources and generate long-form responses. Using our framework, we build two new benchmarks on Multi-Source Retrieval and Synthesis: MSRS-Story and MSRS-Meet, representing narrative synthesis and summarization tasks, respectively, that require retrieval from large collections. Our extensive experiments with various RAG pipelines -- including sparse and dense retrievers combined with frontier LLMs -- reveal that generation quality is highly dependent on retrieval effectiveness, which varies greatly by task. While multi-source synthesis proves challenging even in an oracle retrieval setting, we find that reasoning models significantly outperform standard LLMs at this distinct step.
Generation-Augmented Retrieval for Open-domain Question Answering
We propose Generation-Augmented Retrieval (GAR) for answering open-domain questions, which augments a query through text generation of heuristically discovered relevant contexts without external resources as supervision. We demonstrate that the generated contexts substantially enrich the semantics of the queries and GAR with sparse representations (BM25) achieves comparable or better performance than state-of-the-art dense retrieval methods such as DPR. We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy. Moreover, as sparse and dense representations are often complementary, GAR can be easily combined with DPR to achieve even better performance. GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader, and consistently outperforms other retrieval methods when the same generative reader is used.
CoFE-RAG: A Comprehensive Full-chain Evaluation Framework for Retrieval-Augmented Generation with Enhanced Data Diversity
Retrieval-Augmented Generation (RAG) aims to enhance large language models (LLMs) to generate more accurate and reliable answers with the help of the retrieved context from external knowledge sources, thereby reducing the incidence of hallucinations. Despite the advancements, evaluating these systems remains a crucial research area due to the following issues: (1) Limited data diversity: The insufficient diversity of knowledge sources and query types constrains the applicability of RAG systems; (2) Obscure problems location: Existing evaluation methods have difficulty in locating the stage of the RAG pipeline where problems occur; (3) Unstable retrieval evaluation: These methods often fail to effectively assess retrieval performance, particularly when the chunking strategy changes. To tackle these challenges, we propose a Comprehensive Full-chain Evaluation (CoFE-RAG) framework to facilitate thorough evaluation across the entire RAG pipeline, including chunking, retrieval, reranking, and generation. To effectively evaluate the first three phases, we introduce multi-granularity keywords, including coarse-grained and fine-grained keywords, to assess the retrieved context instead of relying on the annotation of golden chunks. Moreover, we release a holistic benchmark dataset tailored for diverse data scenarios covering a wide range of document formats and query types. We demonstrate the utility of the CoFE-RAG framework by conducting experiments to evaluate each stage of RAG systems. Our evaluation method provides unique insights into the effectiveness of RAG systems in handling diverse data scenarios, offering a more nuanced understanding of their capabilities and limitations.
Transformer Memory as a Differentiable Search Index
In this paper, we demonstrate that information retrieval can be accomplished with a single Transformer, in which all information about the corpus is encoded in the parameters of the model. To this end, we introduce the Differentiable Search Index (DSI), a new paradigm that learns a text-to-text model that maps string queries directly to relevant docids; in other words, a DSI model answers queries directly using only its parameters, dramatically simplifying the whole retrieval process. We study variations in how documents and their identifiers are represented, variations in training procedures, and the interplay between models and corpus sizes. Experiments demonstrate that given appropriate design choices, DSI significantly outperforms strong baselines such as dual encoder models. Moreover, DSI demonstrates strong generalization capabilities, outperforming a BM25 baseline in a zero-shot setup.
Mixture of Structural-and-Textual Retrieval over Text-rich Graph Knowledge Bases
Text-rich Graph Knowledge Bases (TG-KBs) have become increasingly crucial for answering queries by providing textual and structural knowledge. However, current retrieval methods often retrieve these two types of knowledge in isolation without considering their mutual reinforcement and some hybrid methods even bypass structural retrieval entirely after neighboring aggregation. To fill in this gap, we propose a Mixture of Structural-and-Textual Retrieval (MoR) to retrieve these two types of knowledge via a Planning-Reasoning-Organizing framework. In the Planning stage, MoR generates textual planning graphs delineating the logic for answering queries. Following planning graphs, in the Reasoning stage, MoR interweaves structural traversal and textual matching to obtain candidates from TG-KBs. In the Organizing stage, MoR further reranks fetched candidates based on their structural trajectory. Extensive experiments demonstrate the superiority of MoR in harmonizing structural and textual retrieval with insights, including uneven retrieving performance across different query logics and the benefits of integrating structural trajectories for candidate reranking. Our code is available at https://github.com/Yoega/MoR.
MetaGen Blended RAG: Higher Accuracy for Domain-Specific Q&A Without Fine-Tuning
Despite the widespread exploration of Retrieval-Augmented Generation (RAG), its deployment in enterprises for domain-specific datasets remains limited due to poor answer accuracy. These corpora, often shielded behind firewalls in private enterprise knowledge bases, having complex, domain-specific terminology, rarely seen by LLMs during pre-training; exhibit significant semantic variability across domains (like networking, military, or legal, etc.), or even within a single domain like medicine, and thus result in poor context precision for RAG systems. Currently, in such situations, fine-tuning or RAG with fine-tuning is attempted, but these approaches are slow, expensive, and lack generalization for accuracy as the new domain-specific data emerges. We propose an approach for Enterprise Search that focuses on enhancing the retriever for a domain-specific corpus through hybrid query indexes and metadata enrichment. This 'MetaGen Blended RAG' method constructs a metadata generation pipeline using key concepts, topics, and acronyms, and then creates a metadata-enriched hybrid index with boosted search queries. This approach avoids overfitting and generalizes effectively across domains. On the PubMedQA benchmark for the biomedical domain, the proposed method achieves 82% retrieval accuracy and 77% RAG accuracy, surpassing all previous RAG accuracy results without fine-tuning and sets a new benchmark for zero-shot results while outperforming much larger models like GPT3.5. The results are even comparable to the best fine-tuned models on this dataset, and we further demonstrate the robustness and scalability of the approach by evaluating it on other Q&A datasets like SQuAD, NQ etc.
Probing-RAG: Self-Probing to Guide Language Models in Selective Document Retrieval
Retrieval-Augmented Generation (RAG) enhances language models by retrieving and incorporating relevant external knowledge. However, traditional retrieve-and-generate processes may not be optimized for real-world scenarios, where queries might require multiple retrieval steps or none at all. In this paper, we propose a Probing-RAG, which utilizes the hidden state representations from the intermediate layers of language models to adaptively determine the necessity of additional retrievals for a given query. By employing a pre-trained prober, Probing-RAG effectively captures the model's internal cognition, enabling reliable decision-making about retrieving external documents. Experimental results across five open-domain QA datasets demonstrate that Probing-RAG outperforms previous methods while reducing the number of redundant retrieval steps.
Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers
Retrieval-Augmented Generation (RAG) is a prevalent approach to infuse a private knowledge base of documents with Large Language Models (LLM) to build Generative Q\&A (Question-Answering) systems. However, RAG accuracy becomes increasingly challenging as the corpus of documents scales up, with Retrievers playing an outsized role in the overall RAG accuracy by extracting the most relevant document from the corpus to provide context to the LLM. In this paper, we propose the 'Blended RAG' method of leveraging semantic search techniques, such as Dense Vector indexes and Sparse Encoder indexes, blended with hybrid query strategies. Our study achieves better retrieval results and sets new benchmarks for IR (Information Retrieval) datasets like NQ and TREC-COVID datasets. We further extend such a 'Blended Retriever' to the RAG system to demonstrate far superior results on Generative Q\&A datasets like SQUAD, even surpassing fine-tuning performance.
Simple Applications of BERT for Ad Hoc Document Retrieval
Following recent successes in applying BERT to question answering, we explore simple applications to ad hoc document retrieval. This required confronting the challenge posed by documents that are typically longer than the length of input BERT was designed to handle. We address this issue by applying inference on sentences individually, and then aggregating sentence scores to produce document scores. Experiments on TREC microblog and newswire test collections show that our approach is simple yet effective, as we report the highest average precision on these datasets by neural approaches that we are aware of.
Zero-Shot Dense Retrieval with Embeddings from Relevance Feedback
Building effective dense retrieval systems remains difficult when relevance supervision is not available. Recent work has looked to overcome this challenge by using a Large Language Model (LLM) to generate hypothetical documents that can be used to find the closest real document. However, this approach relies solely on the LLM to have domain-specific knowledge relevant to the query, which may not be practical. Furthermore, generating hypothetical documents can be inefficient as it requires the LLM to generate a large number of tokens for each query. To address these challenges, we introduce Real Document Embeddings from Relevance Feedback (ReDE-RF). Inspired by relevance feedback, ReDE-RF proposes to re-frame hypothetical document generation as a relevance estimation task, using an LLM to select which documents should be used for nearest neighbor search. Through this re-framing, the LLM no longer needs domain-specific knowledge but only needs to judge what is relevant. Additionally, relevance estimation only requires the LLM to output a single token, thereby improving search latency. Our experiments show that ReDE-RF consistently surpasses state-of-the-art zero-shot dense retrieval methods across a wide range of low-resource retrieval datasets while also making significant improvements in latency per-query.
UDA: A Benchmark Suite for Retrieval Augmented Generation in Real-world Document Analysis
The use of Retrieval-Augmented Generation (RAG) has improved Large Language Models (LLMs) in collaborating with external data, yet significant challenges exist in real-world scenarios. In areas such as academic literature and finance question answering, data are often found in raw text and tables in HTML or PDF formats, which can be lengthy and highly unstructured. In this paper, we introduce a benchmark suite, namely Unstructured Document Analysis (UDA), that involves 2,965 real-world documents and 29,590 expert-annotated Q&A pairs. We revisit popular LLM- and RAG-based solutions for document analysis and evaluate the design choices and answer qualities across multiple document domains and diverse query types. Our evaluation yields interesting findings and highlights the importance of data parsing and retrieval. We hope our benchmark can shed light and better serve real-world document analysis applications. The benchmark suite and code can be found at https://github.com/qinchuanhui/UDA-Benchmark.
Efficient Neural Ranking using Forward Indexes
Neural document ranking approaches, specifically transformer models, have achieved impressive gains in ranking performance. However, query processing using such over-parameterized models is both resource and time intensive. In this paper, we propose the Fast-Forward index -- a simple vector forward index that facilitates ranking documents using interpolation of lexical and semantic scores -- as a replacement for contextual re-rankers and dense indexes based on nearest neighbor search. Fast-Forward indexes rely on efficient sparse models for retrieval and merely look up pre-computed dense transformer-based vector representations of documents and passages in constant time for fast CPU-based semantic similarity computation during query processing. We propose index pruning and theoretically grounded early stopping techniques to improve the query processing throughput. We conduct extensive large-scale experiments on TREC-DL datasets and show improvements over hybrid indexes in performance and query processing efficiency using only CPUs. Fast-Forward indexes can provide superior ranking performance using interpolation due to the complementary benefits of lexical and semantic similarities.
Knowledge-Augmented Large Language Models for Personalized Contextual Query Suggestion
Large Language Models (LLMs) excel at tackling various natural language tasks. However, due to the significant costs involved in re-training or fine-tuning them, they remain largely static and difficult to personalize. Nevertheless, a variety of applications could benefit from generations that are tailored to users' preferences, goals, and knowledge. Among them is web search, where knowing what a user is trying to accomplish, what they care about, and what they know can lead to improved search experiences. In this work, we propose a novel and general approach that augments an LLM with relevant context from users' interaction histories with a search engine in order to personalize its outputs. Specifically, we construct an entity-centric knowledge store for each user based on their search and browsing activities on the web, which is then leveraged to provide contextually relevant LLM prompt augmentations. This knowledge store is light-weight, since it only produces user-specific aggregate projections of interests and knowledge onto public knowledge graphs, and leverages existing search log infrastructure, thereby mitigating the privacy, compliance, and scalability concerns associated with building deep user profiles for personalization. We then validate our approach on the task of contextual query suggestion, which requires understanding not only the user's current search context but also what they historically know and care about. Through a number of experiments based on human evaluation, we show that our approach is significantly better than several other LLM-powered baselines, generating query suggestions that are contextually more relevant, personalized, and useful.
Teaching Dense Retrieval Models to Specialize with Listwise Distillation and LLM Data Augmentation
While the current state-of-the-art dense retrieval models exhibit strong out-of-domain generalization, they might fail to capture nuanced domain-specific knowledge. In principle, fine-tuning these models for specialized retrieval tasks should yield higher effectiveness than relying on a one-size-fits-all model, but in practice, results can disappoint. We show that standard fine-tuning methods using an InfoNCE loss can unexpectedly degrade effectiveness rather than improve it, even for domain-specific scenarios. This holds true even when applying widely adopted techniques such as hard-negative mining and negative de-noising. To address this, we explore a training strategy that uses listwise distillation from a teacher cross-encoder, leveraging rich relevance signals to fine-tune the retriever. We further explore synthetic query generation using large language models. Through listwise distillation and training with a diverse set of queries ranging from natural user searches and factual claims to keyword-based queries, we achieve consistent effectiveness gains across multiple datasets. Our results also reveal that synthetic queries can rival human-written queries in training utility. However, we also identify limitations, particularly in the effectiveness of cross-encoder teachers as a bottleneck. We release our code and scripts to encourage further research.