new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Sep 9

Domain-Adversarial Training of Neural Networks

We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains. The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages. We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.

Unfolding AIS transmission behavior for vessel movement modeling on noisy data leveraging machine learning

The oceans are a source of an impressive mixture of complex data that could be used to uncover relationships yet to be discovered. Such data comes from the oceans and their surface, such as Automatic Identification System (AIS) messages used for tracking vessels' trajectories. AIS messages are transmitted over radio or satellite at ideally periodic time intervals but vary irregularly over time. As such, this paper aims to model the AIS message transmission behavior through neural networks for forecasting upcoming AIS messages' content from multiple vessels, particularly in a simultaneous approach despite messages' temporal irregularities as outliers. We present a set of experiments comprising multiple algorithms for forecasting tasks with horizon sizes of varying lengths. Deep learning models (e.g., neural networks) revealed themselves to adequately preserve vessels' spatial awareness regardless of temporal irregularity. We show how convolutional layers, feed-forward networks, and recurrent neural networks can improve such tasks by working together. Experimenting with short, medium, and large-sized sequences of messages, our model achieved 36/37/38% of the Relative Percentage Difference - the lower, the better, whereas we observed 92/45/96% on the Elman's RNN, 51/52/40% on the GRU, and 129/98/61% on the LSTM. These results support our model as a driver for improving the prediction of vessel routes when analyzing multiple vessels of diverging types simultaneously under temporally noise data.

Exact Learning of Permutations for Nonzero Binary Inputs with Logarithmic Training Size and Quadratic Ensemble Complexity

The ability of an architecture to realize permutations is quite fundamental. For example, Large Language Models need to be able to correctly copy (and perhaps rearrange) parts of the input prompt into the output. Classical universal approximation theorems guarantee the existence of parameter configurations that solve this task but offer no insights into whether gradient-based algorithms can find them. In this paper, we address this gap by focusing on two-layer fully connected feed-forward neural networks and the task of learning permutations on nonzero binary inputs. We show that in the infinite width Neural Tangent Kernel (NTK) regime, an ensemble of such networks independently trained with gradient descent on only the k standard basis vectors out of 2^k - 1 possible inputs successfully learns any fixed permutation of length k with arbitrarily high probability. By analyzing the exact training dynamics, we prove that the network's output converges to a Gaussian process whose mean captures the ground truth permutation via sign-based features. We then demonstrate how averaging these runs (an "ensemble" method) and applying a simple rounding step yields an arbitrarily accurate prediction on any possible input unseen during training. Notably, the number of models needed to achieve exact learning with high probability (which we refer to as ensemble complexity) exhibits a linearithmic dependence on the input size k for a single test input and a quadratic dependence when considering all test inputs simultaneously.

Safety Verification of Deep Neural Networks

Deep neural networks have achieved impressive experimental results in image classification, but can surprisingly be unstable with respect to adversarial perturbations, that is, minimal changes to the input image that cause the network to misclassify it. With potential applications including perception modules and end-to-end controllers for self-driving cars, this raises concerns about their safety. We develop a novel automated verification framework for feed-forward multi-layer neural networks based on Satisfiability Modulo Theory (SMT). We focus on safety of image classification decisions with respect to image manipulations, such as scratches or changes to camera angle or lighting conditions that would result in the same class being assigned by a human, and define safety for an individual decision in terms of invariance of the classification within a small neighbourhood of the original image. We enable exhaustive search of the region by employing discretisation, and propagate the analysis layer by layer. Our method works directly with the network code and, in contrast to existing methods, can guarantee that adversarial examples, if they exist, are found for the given region and family of manipulations. If found, adversarial examples can be shown to human testers and/or used to fine-tune the network. We implement the techniques using Z3 and evaluate them on state-of-the-art networks, including regularised and deep learning networks. We also compare against existing techniques to search for adversarial examples and estimate network robustness.

Scalable Neural Network Kernels

We introduce the concept of scalable neural network kernels (SNNKs), the replacements of regular feedforward layers (FFLs), capable of approximating the latter, but with favorable computational properties. SNNKs effectively disentangle the inputs from the parameters of the neural network in the FFL, only to connect them in the final computation via the dot-product kernel. They are also strictly more expressive, as allowing to model complicated relationships beyond the functions of the dot-products of parameter-input vectors. We also introduce the neural network bundling process that applies SNNKs to compactify deep neural network architectures, resulting in additional compression gains. In its extreme version, it leads to the fully bundled network whose optimal parameters can be expressed via explicit formulae for several loss functions (e.g. mean squared error), opening a possibility to bypass backpropagation. As a by-product of our analysis, we introduce the mechanism of the universal random features (or URFs), applied to instantiate several SNNK variants, and interesting on its own in the context of scalable kernel methods. We provide rigorous theoretical analysis of all these concepts as well as an extensive empirical evaluation, ranging from point-wise kernel estimation to Transformers' fine-tuning with novel adapter layers inspired by SNNKs. Our mechanism provides up to 5x reduction in the number of trainable parameters, while maintaining competitive accuracy.

On the Initialization of Graph Neural Networks

Graph Neural Networks (GNNs) have displayed considerable promise in graph representation learning across various applications. The core learning process requires the initialization of model weight matrices within each GNN layer, which is typically accomplished via classic initialization methods such as Xavier initialization. However, these methods were originally motivated to stabilize the variance of hidden embeddings and gradients across layers of Feedforward Neural Networks (FNNs) and Convolutional Neural Networks (CNNs) to avoid vanishing gradients and maintain steady information flow. In contrast, within the GNN context classical initializations disregard the impact of the input graph structure and message passing on variance. In this paper, we analyze the variance of forward and backward propagation across GNN layers and show that the variance instability of GNN initializations comes from the combined effect of the activation function, hidden dimension, graph structure and message passing. To better account for these influence factors, we propose a new initialization method for Variance Instability Reduction within GNN Optimization (Virgo), which naturally tends to equate forward and backward variances across successive layers. We conduct comprehensive experiments on 15 datasets to show that Virgo can lead to superior model performance and more stable variance at initialization on node classification, link prediction and graph classification tasks. Codes are in https://github.com/LspongebobJH/virgo_icml2023.

Learning Delays in Spiking Neural Networks using Dilated Convolutions with Learnable Spacings

Spiking Neural Networks (SNNs) are a promising research direction for building power-efficient information processing systems, especially for temporal tasks such as speech recognition. In SNNs, delays refer to the time needed for one spike to travel from one neuron to another. These delays matter because they influence the spike arrival times, and it is well-known that spiking neurons respond more strongly to coincident input spikes. More formally, it has been shown theoretically that plastic delays greatly increase the expressivity in SNNs. Yet, efficient algorithms to learn these delays have been lacking. Here, we propose a new discrete-time algorithm that addresses this issue in deep feedforward SNNs using backpropagation, in an offline manner. To simulate delays between consecutive layers, we use 1D convolutions across time. The kernels contain only a few non-zero weights - one per synapse - whose positions correspond to the delays. These positions are learned together with the weights using the recently proposed Dilated Convolution with Learnable Spacings (DCLS). We evaluated our method on three datasets: the Spiking Heidelberg Dataset (SHD), the Spiking Speech Commands (SSC) and its non-spiking version Google Speech Commands v0.02 (GSC) benchmarks, which require detecting temporal patterns. We used feedforward SNNs with two or three hidden fully connected layers, and vanilla leaky integrate-and-fire neurons. We showed that fixed random delays help and that learning them helps even more. Furthermore, our method outperformed the state-of-the-art in the three datasets without using recurrent connections and with substantially fewer parameters. Our work demonstrates the potential of delay learning in developing accurate and precise models for temporal data processing. Our code is based on PyTorch / SpikingJelly and available at: https://github.com/Thvnvtos/SNN-delays

Adding Gradient Noise Improves Learning for Very Deep Networks

Deep feedforward and recurrent networks have achieved impressive results in many perception and language processing applications. This success is partially attributed to architectural innovations such as convolutional and long short-term memory networks. The main motivation for these architectural innovations is that they capture better domain knowledge, and importantly are easier to optimize than more basic architectures. Recently, more complex architectures such as Neural Turing Machines and Memory Networks have been proposed for tasks including question answering and general computation, creating a new set of optimization challenges. In this paper, we discuss a low-overhead and easy-to-implement technique of adding gradient noise which we find to be surprisingly effective when training these very deep architectures. The technique not only helps to avoid overfitting, but also can result in lower training loss. This method alone allows a fully-connected 20-layer deep network to be trained with standard gradient descent, even starting from a poor initialization. We see consistent improvements for many complex models, including a 72% relative reduction in error rate over a carefully-tuned baseline on a challenging question-answering task, and a doubling of the number of accurate binary multiplication models learned across 7,000 random restarts. We encourage further application of this technique to additional complex modern architectures.

Forward Learning of Graph Neural Networks

Graph neural networks (GNNs) have achieved remarkable success across a wide range of applications, such as recommendation, drug discovery, and question answering. Behind the success of GNNs lies the backpropagation (BP) algorithm, which is the de facto standard for training deep neural networks (NNs). However, despite its effectiveness, BP imposes several constraints, which are not only biologically implausible, but also limit the scalability, parallelism, and flexibility in learning NNs. Examples of such constraints include storage of neural activities computed in the forward pass for use in the subsequent backward pass, and the dependence of parameter updates on non-local signals. To address these limitations, the forward-forward algorithm (FF) was recently proposed as an alternative to BP in the image classification domain, which trains NNs by performing two forward passes over positive and negative data. Inspired by this advance, we propose ForwardGNN in this work, a new forward learning procedure for GNNs, which avoids the constraints imposed by BP via an effective layer-wise local forward training. ForwardGNN extends the original FF to deal with graph data and GNNs, and makes it possible to operate without generating negative inputs (hence no longer forward-forward). Further, ForwardGNN enables each layer to learn from both the bottom-up and top-down signals without relying on the backpropagation of errors. Extensive experiments on real-world datasets show the effectiveness and generality of the proposed forward graph learning framework. We release our code at https://github.com/facebookresearch/forwardgnn.

Backpropagation-free Training of Deep Physical Neural Networks

Recent years have witnessed the outstanding success of deep learning in various fields such as vision and natural language processing. This success is largely indebted to the massive size of deep learning models that is expected to increase unceasingly. This growth of the deep learning models is accompanied by issues related to their considerable energy consumption, both during the training and inference phases, as well as their scalability. Although a number of work based on unconventional physical systems have been proposed which addresses the issue of energy efficiency in the inference phase, efficient training of deep learning models has remained unaddressed. So far, training of digital deep learning models mainly relies on backpropagation, which is not suitable for physical implementation as it requires perfect knowledge of the computation performed in the so-called forward pass of the neural network. Here, we tackle this issue by proposing a simple deep neural network architecture augmented by a biologically plausible learning algorithm, referred to as "model-free forward-forward training". The proposed architecture enables training deep physical neural networks consisting of layers of physical nonlinear systems, without requiring detailed knowledge of the nonlinear physical layers' properties. We show that our method outperforms state-of-the-art hardware-aware training methods by improving training speed, decreasing digital computations, and reducing power consumption in physical systems. We demonstrate the adaptability of the proposed method, even in systems exposed to dynamic or unpredictable external perturbations. To showcase the universality of our approach, we train diverse wave-based physical neural networks that vary in the underlying wave phenomenon and the type of non-linearity they use, to perform vowel and image classification tasks experimentally.

Universal Approximation Theorem for a Single-Layer Transformer

Deep learning employs multi-layer neural networks trained via the backpropagation algorithm. This approach has achieved success across many domains and relies on adaptive gradient methods such as the Adam optimizer. Sequence modeling evolved from recurrent neural networks to attention-based models, culminating in the Transformer architecture. Transformers have achieved state-of-the-art performance in natural language processing (for example, BERT and GPT-3) and have been applied in computer vision and computational biology. However, theoretical understanding of these models remains limited. In this paper, we examine the mathematical foundations of deep learning and Transformers and present a novel theoretical result. We review key concepts from linear algebra, probability, and optimization that underpin deep learning, and we analyze the multi-head self-attention mechanism and the backpropagation algorithm in detail. Our main contribution is a universal approximation theorem for Transformers: we prove that a single-layer Transformer, comprising one self-attention layer followed by a position-wise feed-forward network with ReLU activation, can approximate any continuous sequence-to-sequence mapping on a compact domain to arbitrary precision. We provide a formal statement and a complete proof. Finally, we present case studies that demonstrate the practical implications of this result. Our findings advance the theoretical understanding of Transformer models and help bridge the gap between theory and practice.

NoProp: Training Neural Networks without Back-propagation or Forward-propagation

The canonical deep learning approach for learning requires computing a gradient term at each layer by back-propagating the error signal from the output towards each learnable parameter. Given the stacked structure of neural networks, where each layer builds on the representation of the layer below, this approach leads to hierarchical representations. More abstract features live on the top layers of the model, while features on lower layers are expected to be less abstract. In contrast to this, we introduce a new learning method named NoProp, which does not rely on either forward or backwards propagation. Instead, NoProp takes inspiration from diffusion and flow matching methods, where each layer independently learns to denoise a noisy target. We believe this work takes a first step towards introducing a new family of gradient-free learning methods, that does not learn hierarchical representations -- at least not in the usual sense. NoProp needs to fix the representation at each layer beforehand to a noised version of the target, learning a local denoising process that can then be exploited at inference. We demonstrate the effectiveness of our method on MNIST, CIFAR-10, and CIFAR-100 image classification benchmarks. Our results show that NoProp is a viable learning algorithm which achieves superior accuracy, is easier to use and computationally more efficient compared to other existing back-propagation-free methods. By departing from the traditional gradient based learning paradigm, NoProp alters how credit assignment is done within the network, enabling more efficient distributed learning as well as potentially impacting other characteristics of the learning process.

Wide and Deep Neural Networks Achieve Optimality for Classification

While neural networks are used for classification tasks across domains, a long-standing open problem in machine learning is determining whether neural networks trained using standard procedures are optimal for classification, i.e., whether such models minimize the probability of misclassification for arbitrary data distributions. In this work, we identify and construct an explicit set of neural network classifiers that achieve optimality. Since effective neural networks in practice are typically both wide and deep, we analyze infinitely wide networks that are also infinitely deep. In particular, using the recent connection between infinitely wide neural networks and Neural Tangent Kernels, we provide explicit activation functions that can be used to construct networks that achieve optimality. Interestingly, these activation functions are simple and easy to implement, yet differ from commonly used activations such as ReLU or sigmoid. More generally, we create a taxonomy of infinitely wide and deep networks and show that these models implement one of three well-known classifiers depending on the activation function used: (1) 1-nearest neighbor (model predictions are given by the label of the nearest training example); (2) majority vote (model predictions are given by the label of the class with greatest representation in the training set); or (3) singular kernel classifiers (a set of classifiers containing those that achieve optimality). Our results highlight the benefit of using deep networks for classification tasks, in contrast to regression tasks, where excessive depth is harmful.

Counter-Current Learning: A Biologically Plausible Dual Network Approach for Deep Learning

Despite its widespread use in neural networks, error backpropagation has faced criticism for its lack of biological plausibility, suffering from issues such as the backward locking problem and the weight transport problem. These limitations have motivated researchers to explore more biologically plausible learning algorithms that could potentially shed light on how biological neural systems adapt and learn. Inspired by the counter-current exchange mechanisms observed in biological systems, we propose counter-current learning (CCL), a biologically plausible framework for credit assignment in neural networks. This framework employs a feedforward network to process input data and a feedback network to process targets, with each network enhancing the other through anti-parallel signal propagation. By leveraging the more informative signals from the bottom layer of the feedback network to guide the updates of the top layer of the feedforward network and vice versa, CCL enables the simultaneous transformation of source inputs to target outputs and the dynamic mutual influence of these transformations. Experimental results on MNIST, FashionMNIST, CIFAR10, and CIFAR100 datasets using multi-layer perceptrons and convolutional neural networks demonstrate that CCL achieves comparable performance to other biologically plausible algorithms while offering a more biologically realistic learning mechanism. Furthermore, we showcase the applicability of our approach to an autoencoder task, underscoring its potential for unsupervised representation learning. Our work presents a direction for biologically inspired and plausible learning algorithms, offering an alternative mechanism of learning and adaptation in neural networks.

Activation Space Selectable Kolmogorov-Arnold Networks

The multilayer perceptron (MLP), a fundamental paradigm in current artificial intelligence, is widely applied in fields such as computer vision and natural language processing. However, the recently proposed Kolmogorov-Arnold Network (KAN), based on nonlinear additive connections, has been proven to achieve performance comparable to MLPs with significantly fewer parameters. Despite this potential, the use of a single activation function space results in reduced performance of KAN and related works across different tasks. To address this issue, we propose an activation space Selectable KAN (S-KAN). S-KAN employs an adaptive strategy to choose the possible activation mode for data at each feedforward KAN node. Our approach outperforms baseline methods in seven representative function fitting tasks and significantly surpasses MLP methods with the same level of parameters. Furthermore, we extend the structure of S-KAN and propose an activation space selectable Convolutional KAN (S-ConvKAN), which achieves leading results on four general image classification datasets. Our method mitigates the performance variability of the original KAN across different tasks and demonstrates through extensive experiments that feedforward KANs with selectable activations can achieve or even exceed the performance of MLP-based methods. This work contributes to the understanding of the data-centric design of new AI paradigms and provides a foundational reference for innovations in KAN-based network architectures.

Attention is All You Need? Good Embeddings with Statistics are enough:Large Scale Audio Understanding without Transformers/ Convolutions/ BERTs/ Mixers/ Attention/ RNNs or ....

This paper presents a way of doing large scale audio understanding without traditional state of the art neural architectures. Ever since the introduction of deep learning for understanding audio signals in the past decade, convolutional architectures have been able to achieve state of the art results surpassing traditional hand-crafted features. In the recent past, there has been a similar shift away from traditional convolutional and recurrent neural networks towards purely end-to-end Transformer architectures. We, in this work, explore an approach, based on Bag-of-Words model. Our approach does not have any convolutions, recurrence, attention, transformers or other approaches such as BERT. We utilize micro and macro level clustered vanilla embeddings, and use a MLP head for classification. We only use feed-forward encoder-decoder models to get the bottlenecks of spectral envelops, spectral patches and slices as well as multi-resolution spectra. A classification head (a feed-forward layer), similar to the approach in SimCLR is trained on a learned representation. Using simple codes learned on latent representations, we show how we surpass traditional convolutional neural network architectures, and come strikingly close to outperforming powerful Transformer architectures. This work hopefully would pave way for exciting advancements in the field of representation learning without massive, end-to-end neural architectures.

Discrete Key-Value Bottleneck

Deep neural networks perform well on classification tasks where data streams are i.i.d. and labeled data is abundant. Challenges emerge with non-stationary training data streams such as continual learning. One powerful approach that has addressed this challenge involves pre-training of large encoders on volumes of readily available data, followed by task-specific tuning. Given a new task, however, updating the weights of these encoders is challenging as a large number of weights needs to be fine-tuned, and as a result, they forget information about the previous tasks. In the present work, we propose a model architecture to address this issue, building upon a discrete bottleneck containing pairs of separate and learnable key-value codes. Our paradigm will be to encode; process the representation via a discrete bottleneck; and decode. Here, the input is fed to the pre-trained encoder, the output of the encoder is used to select the nearest keys, and the corresponding values are fed to the decoder to solve the current task. The model can only fetch and re-use a sparse number of these key-value pairs during inference, enabling localized and context-dependent model updates. We theoretically investigate the ability of the discrete key-value bottleneck to minimize the effect of learning under distribution shifts and show that it reduces the complexity of the hypothesis class. We empirically verify the proposed method under challenging class-incremental learning scenarios and show that the proposed model - without any task boundaries - reduces catastrophic forgetting across a wide variety of pre-trained models, outperforming relevant baselines on this task.

Skip a Layer or Loop it? Test-Time Depth Adaptation of Pretrained LLMs

Can a pretrained neural network adapt its architecture to different inputs without any finetuning? Do we need all layers for simple tasks, and are they adequate for challenging tasks? We found that the layers of a pretrained large language model (LLM) can be manipulated as separate modules to build a better and even shallower model customized for each test sample. In particular, each layer from the pretrained model can be skipped/pruned or repeated multiple times as recurrent neural networks (RNN), and stacked with others in arbitrary orders, yielding a chain-of-layers (CoLa) per sample. This compositional space greatly expands the scope of existing works on looped/recurrent pretrained modules, layer pruning, or early-exit networks. We develop a Monte Carlo Tree Search (MCTS) protocol to explore and identify the optimal CoLa for each sample from math and commonsense reasoning benchmarks. Compared to a static model of a fixed depth, CoLa allows shortcut paths (fast thinking), recurrence of the same layer(s) (slow thinking), and combining both, offering more flexible, dynamic architectures for different inputs. We conduct an extensive analysis of the MCTS-optimized CoLa, which leads to two key findings: (1) For >75% of samples with correct predictions by the original LLM, we can find shorter CoLa, suggesting a large space for improving inference efficiency; (2) For >60% of samples with originally incorrect predictions, we can identify CoLa achieving correct predictions, suggesting a large space of performance enhancement. Our results highlight the shortcomings of using a fixed architecture of pre-trained LLMs for inference on different samples and pave the way to unlock the generalization power of test-time depth adaptation.

Continual Learning with Dependency Preserving Hypernetworks

Humans learn continually throughout their lifespan by accumulating diverse knowledge and fine-tuning it for future tasks. When presented with a similar goal, neural networks suffer from catastrophic forgetting if data distributions across sequential tasks are not stationary over the course of learning. An effective approach to address such continual learning (CL) problems is to use hypernetworks which generate task dependent weights for a target network. However, the continual learning performance of existing hypernetwork based approaches are affected by the assumption of independence of the weights across the layers in order to maintain parameter efficiency. To address this limitation, we propose a novel approach that uses a dependency preserving hypernetwork to generate weights for the target network while also maintaining the parameter efficiency. We propose to use recurrent neural network (RNN) based hypernetwork that can generate layer weights efficiently while allowing for dependencies across them. In addition, we propose novel regularisation and network growth techniques for the RNN based hypernetwork to further improve the continual learning performance. To demonstrate the effectiveness of the proposed methods, we conducted experiments on several image classification continual learning tasks and settings. We found that the proposed methods based on the RNN hypernetworks outperformed the baselines in all these CL settings and tasks.

Opening the Black Box of Deep Neural Networks via Information

Despite their great success, there is still no comprehensive theoretical understanding of learning with Deep Neural Networks (DNNs) or their inner organization. Previous work proposed to analyze DNNs in the Information Plane; i.e., the plane of the Mutual Information values that each layer preserves on the input and output variables. They suggested that the goal of the network is to optimize the Information Bottleneck (IB) tradeoff between compression and prediction, successively, for each layer. In this work we follow up on this idea and demonstrate the effectiveness of the Information-Plane visualization of DNNs. Our main results are: (i) most of the training epochs in standard DL are spent on {\emph compression} of the input to efficient representation and not on fitting the training labels. (ii) The representation compression phase begins when the training errors becomes small and the Stochastic Gradient Decent (SGD) epochs change from a fast drift to smaller training error into a stochastic relaxation, or random diffusion, constrained by the training error value. (iii) The converged layers lie on or very close to the Information Bottleneck (IB) theoretical bound, and the maps from the input to any hidden layer and from this hidden layer to the output satisfy the IB self-consistent equations. This generalization through noise mechanism is unique to Deep Neural Networks and absent in one layer networks. (iv) The training time is dramatically reduced when adding more hidden layers. Thus the main advantage of the hidden layers is computational. This can be explained by the reduced relaxation time, as this it scales super-linearly (exponentially for simple diffusion) with the information compression from the previous layer.

Sequential Training of Neural Networks with Gradient Boosting

This paper presents a novel technique based on gradient boosting to train the final layers of a neural network (NN). Gradient boosting is an additive expansion algorithm in which a series of models are trained sequentially to approximate a given function. A neural network can also be seen as an additive expansion where the scalar product of the responses of the last hidden layer and its weights provide the final output of the network. Instead of training the network as a whole, the proposed algorithm trains the network sequentially in T steps. First, the bias term of the network is initialized with a constant approximation that minimizes the average loss of the data. Then, at each step, a portion of the network, composed of J neurons, is trained to approximate the pseudo-residuals on the training data computed from the previous iterations. Finally, the T partial models and bias are integrated as a single NN with T times J neurons in the hidden layer. Extensive experiments in classification and regression tasks, as well as in combination with deep neural networks, are carried out showing a competitive generalization performance with respect to neural networks trained with different standard solvers, such as Adam, L-BFGS, SGD and deep models. Furthermore, we show that the proposed method design permits to switch off a number of hidden units during test (the units that were last trained) without a significant reduction of its generalization ability. This permits the adaptation of the model to different classification speed requirements on the fly.

Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions

Deep neural networks are widely used for classification. These deep models often suffer from a lack of interpretability -- they are particularly difficult to understand because of their non-linear nature. As a result, neural networks are often treated as "black box" models, and in the past, have been trained purely to optimize the accuracy of predictions. In this work, we create a novel network architecture for deep learning that naturally explains its own reasoning for each prediction. This architecture contains an autoencoder and a special prototype layer, where each unit of that layer stores a weight vector that resembles an encoded training input. The encoder of the autoencoder allows us to do comparisons within the latent space, while the decoder allows us to visualize the learned prototypes. The training objective has four terms: an accuracy term, a term that encourages every prototype to be similar to at least one encoded input, a term that encourages every encoded input to be close to at least one prototype, and a term that encourages faithful reconstruction by the autoencoder. The distances computed in the prototype layer are used as part of the classification process. Since the prototypes are learned during training, the learned network naturally comes with explanations for each prediction, and the explanations are loyal to what the network actually computes.

A Deep Look into Neural Ranking Models for Information Retrieval

Ranking models lie at the heart of research on information retrieval (IR). During the past decades, different techniques have been proposed for constructing ranking models, from traditional heuristic methods, probabilistic methods, to modern machine learning methods. Recently, with the advance of deep learning technology, we have witnessed a growing body of work in applying shallow or deep neural networks to the ranking problem in IR, referred to as neural ranking models in this paper. The power of neural ranking models lies in the ability to learn from the raw text inputs for the ranking problem to avoid many limitations of hand-crafted features. Neural networks have sufficient capacity to model complicated tasks, which is needed to handle the complexity of relevance estimation in ranking. Since there have been a large variety of neural ranking models proposed, we believe it is the right time to summarize the current status, learn from existing methodologies, and gain some insights for future development. In contrast to existing reviews, in this survey, we will take a deep look into the neural ranking models from different dimensions to analyze their underlying assumptions, major design principles, and learning strategies. We compare these models through benchmark tasks to obtain a comprehensive empirical understanding of the existing techniques. We will also discuss what is missing in the current literature and what are the promising and desired future directions.

Make Deep Networks Shallow Again

Deep neural networks have a good success record and are thus viewed as the best architecture choice for complex applications. Their main shortcoming has been, for a long time, the vanishing gradient which prevented the numerical optimization algorithms from acceptable convergence. A breakthrough has been achieved by the concept of residual connections -- an identity mapping parallel to a conventional layer. This concept is applicable to stacks of layers of the same dimension and substantially alleviates the vanishing gradient problem. A stack of residual connection layers can be expressed as an expansion of terms similar to the Taylor expansion. This expansion suggests the possibility of truncating the higher-order terms and receiving an architecture consisting of a single broad layer composed of all initially stacked layers in parallel. In other words, a sequential deep architecture is substituted by a parallel shallow one. Prompted by this theory, we investigated the performance capabilities of the parallel architecture in comparison to the sequential one. The computer vision datasets MNIST and CIFAR10 were used to train both architectures for a total of 6912 combinations of varying numbers of convolutional layers, numbers of filters, kernel sizes, and other meta parameters. Our findings demonstrate a surprising equivalence between the deep (sequential) and shallow (parallel) architectures. Both layouts produced similar results in terms of training and validation set loss. This discovery implies that a wide, shallow architecture can potentially replace a deep network without sacrificing performance. Such substitution has the potential to simplify network architectures, improve optimization efficiency, and accelerate the training process.

Learning Features with Parameter-Free Layers

Trainable layers such as convolutional building blocks are the standard network design choices by learning parameters to capture the global context through successive spatial operations. When designing an efficient network, trainable layers such as the depthwise convolution is the source of efficiency in the number of parameters and FLOPs, but there was little improvement to the model speed in practice. This paper argues that simple built-in parameter-free operations can be a favorable alternative to the efficient trainable layers replacing spatial operations in a network architecture. We aim to break the stereotype of organizing the spatial operations of building blocks into trainable layers. Extensive experimental analyses based on layer-level studies with fully-trained models and neural architecture searches are provided to investigate whether parameter-free operations such as the max-pool are functional. The studies eventually give us a simple yet effective idea for redesigning network architectures, where the parameter-free operations are heavily used as the main building block without sacrificing the model accuracy as much. Experimental results on the ImageNet dataset demonstrate that the network architectures with parameter-free operations could enjoy the advantages of further efficiency in terms of model speed, the number of the parameters, and FLOPs. Code and ImageNet pretrained models are available at https://github.com/naver-ai/PfLayer.

Evolving Normalization-Activation Layers

Normalization layers and activation functions are fundamental components in deep networks and typically co-locate with each other. Here we propose to design them using an automated approach. Instead of designing them separately, we unify them into a single tensor-to-tensor computation graph, and evolve its structure starting from basic mathematical functions. Examples of such mathematical functions are addition, multiplication and statistical moments. The use of low-level mathematical functions, in contrast to the use of high-level modules in mainstream NAS, leads to a highly sparse and large search space which can be challenging for search methods. To address the challenge, we develop efficient rejection protocols to quickly filter out candidate layers that do not work well. We also use multi-objective evolution to optimize each layer's performance across many architectures to prevent overfitting. Our method leads to the discovery of EvoNorms, a set of new normalization-activation layers with novel, and sometimes surprising structures that go beyond existing design patterns. For example, some EvoNorms do not assume that normalization and activation functions must be applied sequentially, nor need to center the feature maps, nor require explicit activation functions. Our experiments show that EvoNorms work well on image classification models including ResNets, MobileNets and EfficientNets but also transfer well to Mask R-CNN with FPN/SpineNet for instance segmentation and to BigGAN for image synthesis, outperforming BatchNorm and GroupNorm based layers in many cases.

Uncertainty-Aware Explanations Through Probabilistic Self-Explainable Neural Networks

The lack of transparency of Deep Neural Networks continues to be a limitation that severely undermines their reliability and usage in high-stakes applications. Promising approaches to overcome such limitations are Prototype-Based Self-Explainable Neural Networks (PSENNs), whose predictions rely on the similarity between the input at hand and a set of prototypical representations of the output classes, offering therefore a deep, yet transparent-by-design, architecture. So far, such models have been designed by considering pointwise estimates for the prototypes, which remain fixed after the learning phase of the model. In this paper, we introduce a probabilistic reformulation of PSENNs, called Prob-PSENN, which replaces point estimates for the prototypes with probability distributions over their values. This provides not only a more flexible framework for an end-to-end learning of prototypes, but can also capture the explanatory uncertainty of the model, which is a missing feature in previous approaches. In addition, since the prototypes determine both the explanation and the prediction, Prob-PSENNs allow us to detect when the model is making uninformed or uncertain predictions, and to obtain valid explanations for them. Our experiments demonstrate that Prob-PSENNs provide more meaningful and robust explanations than their non-probabilistic counterparts, thus enhancing the explainability and reliability of the models.

Transformers Can Do Bayesian Inference

Currently, it is hard to reap the benefits of deep learning for Bayesian methods, which allow the explicit specification of prior knowledge and accurately capture model uncertainty. We present Prior-Data Fitted Networks (PFNs). PFNs leverage large-scale machine learning techniques to approximate a large set of posteriors. The only requirement for PFNs to work is the ability to sample from a prior distribution over supervised learning tasks (or functions). Our method restates the objective of posterior approximation as a supervised classification problem with a set-valued input: it repeatedly draws a task (or function) from the prior, draws a set of data points and their labels from it, masks one of the labels and learns to make probabilistic predictions for it based on the set-valued input of the rest of the data points. Presented with a set of samples from a new supervised learning task as input, PFNs make probabilistic predictions for arbitrary other data points in a single forward propagation, having learned to approximate Bayesian inference. We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems, with over 200-fold speedups in multiple setups compared to current methods. We obtain strong results in very diverse areas such as Gaussian process regression, Bayesian neural networks, classification for small tabular data sets, and few-shot image classification, demonstrating the generality of PFNs. Code and trained PFNs are released at https://github.com/automl/TransformersCanDoBayesianInference.

N2N Learning: Network to Network Compression via Policy Gradient Reinforcement Learning

While bigger and deeper neural network architectures continue to advance the state-of-the-art for many computer vision tasks, real-world adoption of these networks is impeded by hardware and speed constraints. Conventional model compression methods attempt to address this problem by modifying the architecture manually or using pre-defined heuristics. Since the space of all reduced architectures is very large, modifying the architecture of a deep neural network in this way is a difficult task. In this paper, we tackle this issue by introducing a principled method for learning reduced network architectures in a data-driven way using reinforcement learning. Our approach takes a larger `teacher' network as input and outputs a compressed `student' network derived from the `teacher' network. In the first stage of our method, a recurrent policy network aggressively removes layers from the large `teacher' model. In the second stage, another recurrent policy network carefully reduces the size of each remaining layer. The resulting network is then evaluated to obtain a reward -- a score based on the accuracy and compression of the network. Our approach uses this reward signal with policy gradients to train the policies to find a locally optimal student network. Our experiments show that we can achieve compression rates of more than 10x for models such as ResNet-34 while maintaining similar performance to the input `teacher' network. We also present a valuable transfer learning result which shows that policies which are pre-trained on smaller `teacher' networks can be used to rapidly speed up training on larger `teacher' networks.

Building on Efficient Foundations: Effectively Training LLMs with Structured Feedforward Layers

State-of-the-art results in large language models (LLMs) often rely on scale, which becomes computationally expensive. This has sparked a research agenda to reduce these models' parameter counts and computational costs without significantly impacting their performance. Our study focuses on transformer-based LLMs, specifically targeting the computationally intensive feedforward networks (FFNs), which are less studied than attention blocks. We consider three structured linear parameterizations of the FFN using efficient low-rank and block-diagonal matrices. In contrast to many previous works that examined these approximations, our study i) explores these structures from a training-from-scratch perspective, ii) scales up to 1.3B parameters, and iii) is conducted within recent Transformer-based LLMs rather than convolutional architectures. We demonstrate that these structures can lead to actual computational gains in various scenarios, including online decoding when using a pre-merge technique. Additionally, we propose a novel training regime, called self-guided training, aimed at improving the poor training dynamics that these approximations exhibit when used from initialization. Interestingly, the scaling performance of structured matrices is explored, revealing steeper curves in scaling training FLOPs, along with a favorable scaling trend in the overtraining regime. Specifically, we show that wide and structured networks can utilize training FLOPs more efficiently, with fewer parameters and lower loss than dense models at their optimal trade-off. Our code is available at https://github.com/CLAIRE-Labo/StructuredFFN/tree/main.

The Principles of Deep Learning Theory

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

Training the Untrainable: Introducing Inductive Bias via Representational Alignment

We demonstrate that architectures which traditionally are considered to be ill-suited for a task can be trained using inductive biases from another architecture. Networks are considered untrainable when they overfit, underfit, or converge to poor results even when tuning their hyperparameters. For example, plain fully connected networks overfit on object recognition while deep convolutional networks without residual connections underfit. The traditional answer is to change the architecture to impose some inductive bias, although what that bias is remains unknown. We introduce guidance, where a guide network guides a target network using a neural distance function. The target is optimized to perform well and to match its internal representations, layer-by-layer, to those of the guide; the guide is unchanged. If the guide is trained, this transfers over part of the architectural prior and knowledge of the guide to the target. If the guide is untrained, this transfers over only part of the architectural prior of the guide. In this manner, we can investigate what kinds of priors different architectures place on untrainable networks such as fully connected networks. We demonstrate that this method overcomes the immediate overfitting of fully connected networks on vision tasks, makes plain CNNs competitive to ResNets, closes much of the gap between plain vanilla RNNs and Transformers, and can even help Transformers learn tasks which RNNs can perform more easily. We also discover evidence that better initializations of fully connected networks likely exist to avoid overfitting. Our method provides a mathematical tool to investigate priors and architectures, and in the long term, may demystify the dark art of architecture creation, even perhaps turning architectures into a continuous optimizable parameter of the network.

Investigating the Benefits of Projection Head for Representation Learning

An effective technique for obtaining high-quality representations is adding a projection head on top of the encoder during training, then discarding it and using the pre-projection representations. Despite its proven practical effectiveness, the reason behind the success of this technique is poorly understood. The pre-projection representations are not directly optimized by the loss function, raising the question: what makes them better? In this work, we provide a rigorous theoretical answer to this question. We start by examining linear models trained with self-supervised contrastive loss. We reveal that the implicit bias of training algorithms leads to layer-wise progressive feature weighting, where features become increasingly unequal as we go deeper into the layers. Consequently, lower layers tend to have more normalized and less specialized representations. We theoretically characterize scenarios where such representations are more beneficial, highlighting the intricate interplay between data augmentation and input features. Additionally, we demonstrate that introducing non-linearity into the network allows lower layers to learn features that are completely absent in higher layers. Finally, we show how this mechanism improves the robustness in supervised contrastive learning and supervised learning. We empirically validate our results through various experiments on CIFAR-10/100, UrbanCars and shifted versions of ImageNet. We also introduce a potential alternative to projection head, which offers a more interpretable and controllable design.

What can a Single Attention Layer Learn? A Study Through the Random Features Lens

Attention layers -- which map a sequence of inputs to a sequence of outputs -- are core building blocks of the Transformer architecture which has achieved significant breakthroughs in modern artificial intelligence. This paper presents a rigorous theoretical study on the learning and generalization of a single multi-head attention layer, with a sequence of key vectors and a separate query vector as input. We consider the random feature setting where the attention layer has a large number of heads, with randomly sampled frozen query and key matrices, and trainable value matrices. We show that such a random-feature attention layer can express a broad class of target functions that are permutation invariant to the key vectors. We further provide quantitative excess risk bounds for learning these target functions from finite samples, using random feature attention with finitely many heads. Our results feature several implications unique to the attention structure compared with existing random features theory for neural networks, such as (1) Advantages in the sample complexity over standard two-layer random-feature networks; (2) Concrete and natural classes of functions that can be learned efficiently by a random-feature attention layer; and (3) The effect of the sampling distribution of the query-key weight matrix (the product of the query and key matrix), where Gaussian random weights with a non-zero mean result in better sample complexities over the zero-mean counterpart for learning certain natural target functions. Experiments on simulated data corroborate our theoretical findings and further illustrate the interplay between the sample size and the complexity of the target function.

Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning

A wide range of scientific problems, such as those described by continuous-time dynamical systems and partial differential equations (PDEs), are naturally formulated on function spaces. While function spaces are typically infinite-dimensional, deep learning has predominantly advanced through applications in computer vision and natural language processing that focus on mappings between finite-dimensional spaces. Such fundamental disparities in the nature of the data have limited neural networks from achieving a comparable level of success in scientific applications as seen in other fields. Neural operators are a principled way to generalize neural networks to mappings between function spaces, offering a pathway to replicate deep learning's transformative impact on scientific problems. For instance, neural operators can learn solution operators for entire classes of PDEs, e.g., physical systems with different boundary conditions, coefficient functions, and geometries. A key factor in deep learning's success has been the careful engineering of neural architectures through extensive empirical testing. Translating these neural architectures into neural operators allows operator learning to enjoy these same empirical optimizations. However, prior neural operator architectures have often been introduced as standalone models, not directly derived as extensions of existing neural network architectures. In this paper, we identify and distill the key principles for constructing practical implementations of mappings between infinite-dimensional function spaces. Using these principles, we propose a recipe for converting several popular neural architectures into neural operators with minimal modifications. This paper aims to guide practitioners through this process and details the steps to make neural operators work in practice. Our code can be found at https://github.com/neuraloperator/NNs-to-NOs

A Critical Review of Recurrent Neural Networks for Sequence Learning

Countless learning tasks require dealing with sequential data. Image captioning, speech synthesis, and music generation all require that a model produce outputs that are sequences. In other domains, such as time series prediction, video analysis, and musical information retrieval, a model must learn from inputs that are sequences. Interactive tasks, such as translating natural language, engaging in dialogue, and controlling a robot, often demand both capabilities. Recurrent neural networks (RNNs) are connectionist models that capture the dynamics of sequences via cycles in the network of nodes. Unlike standard feedforward neural networks, recurrent networks retain a state that can represent information from an arbitrarily long context window. Although recurrent neural networks have traditionally been difficult to train, and often contain millions of parameters, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful large-scale learning with them. In recent years, systems based on long short-term memory (LSTM) and bidirectional (BRNN) architectures have demonstrated ground-breaking performance on tasks as varied as image captioning, language translation, and handwriting recognition. In this survey, we review and synthesize the research that over the past three decades first yielded and then made practical these powerful learning models. When appropriate, we reconcile conflicting notation and nomenclature. Our goal is to provide a self-contained explication of the state of the art together with a historical perspective and references to primary research.

Deep Interest Network for Click-Through Rate Prediction

Click-through rate prediction is an essential task in industrial applications, such as online advertising. Recently deep learning based models have been proposed, which follow a similar Embedding\&MLP paradigm. In these methods large scale sparse input features are first mapped into low dimensional embedding vectors, and then transformed into fixed-length vectors in a group-wise manner, finally concatenated together to fed into a multilayer perceptron (MLP) to learn the nonlinear relations among features. In this way, user features are compressed into a fixed-length representation vector, in regardless of what candidate ads are. The use of fixed-length vector will be a bottleneck, which brings difficulty for Embedding\&MLP methods to capture user's diverse interests effectively from rich historical behaviors. In this paper, we propose a novel model: Deep Interest Network (DIN) which tackles this challenge by designing a local activation unit to adaptively learn the representation of user interests from historical behaviors with respect to a certain ad. This representation vector varies over different ads, improving the expressive ability of model greatly. Besides, we develop two techniques: mini-batch aware regularization and data adaptive activation function which can help training industrial deep networks with hundreds of millions of parameters. Experiments on two public datasets as well as an Alibaba real production dataset with over 2 billion samples demonstrate the effectiveness of proposed approaches, which achieve superior performance compared with state-of-the-art methods. DIN now has been successfully deployed in the online display advertising system in Alibaba, serving the main traffic.

A Brief Review of Hypernetworks in Deep Learning

Hypernetworks, or hypernets in short, are neural networks that generate weights for another neural network, known as the target network. They have emerged as a powerful deep learning technique that allows for greater flexibility, adaptability, dynamism, faster training, information sharing, and model compression etc. Hypernets have shown promising results in a variety of deep learning problems, including continual learning, causal inference, transfer learning, weight pruning, uncertainty quantification, zero-shot learning, natural language processing, and reinforcement learning etc. Despite their success across different problem settings, currently, there is no review available to inform the researchers about the developments and to help in utilizing hypernets. To fill this gap, we review the progress in hypernets. We present an illustrative example to train deep neural networks using hypernets and propose categorizing hypernets based on five design criteria as inputs, outputs, variability of inputs and outputs, and architecture of hypernets. We also review applications of hypernets across different deep learning problem settings, followed by a discussion of general scenarios where hypernets can be effectively employed. Finally, we discuss the challenges and future directions that remain under-explored in the field of hypernets. We believe that hypernetworks have the potential to revolutionize the field of deep learning. They offer a new way to design and train neural networks, and they have the potential to improve the performance of deep learning models on a variety of tasks. Through this review, we aim to inspire further advancements in deep learning through hypernetworks.

SortedNet, a Place for Every Network and Every Network in its Place: Towards a Generalized Solution for Training Many-in-One Neural Networks

As the size of deep learning models continues to grow, finding optimal models under memory and computation constraints becomes increasingly more important. Although usually the architecture and constituent building blocks of neural networks allow them to be used in a modular way, their training process is not aware of this modularity. Consequently, conventional neural network training lacks the flexibility to adapt the computational load of the model during inference. This paper proposes SortedNet, a generalized and scalable solution to harness the inherent modularity of deep neural networks across various dimensions for efficient dynamic inference. Our training considers a nested architecture for the sub-models with shared parameters and trains them together with the main model in a sorted and probabilistic manner. This sorted training of sub-networks enables us to scale the number of sub-networks to hundreds using a single round of training. We utilize a novel updating scheme during training that combines random sampling of sub-networks with gradient accumulation to improve training efficiency. Furthermore, the sorted nature of our training leads to a search-free sub-network selection at inference time; and the nested architecture of the resulting sub-networks leads to minimal storage requirement and efficient switching between sub-networks at inference. Our general dynamic training approach is demonstrated across various architectures and tasks, including large language models and pre-trained vision models. Experimental results show the efficacy of the proposed approach in achieving efficient sub-networks while outperforming state-of-the-art dynamic training approaches. Our findings demonstrate the feasibility of training up to 160 different sub-models simultaneously, showcasing the extensive scalability of our proposed method while maintaining 96% of the model performance.

Scale Mixtures of Neural Network Gaussian Processes

Recent works have revealed that infinitely-wide feed-forward or recurrent neural networks of any architecture correspond to Gaussian processes referred to as Neural Network Gaussian Processes (NNGPs). While these works have extended the class of neural networks converging to Gaussian processes significantly, however, there has been little focus on broadening the class of stochastic processes that such neural networks converge to. In this work, inspired by the scale mixture of Gaussian random variables, we propose the scale mixture of NNGPs for which we introduce a prior distribution on the scale of the last-layer parameters. We show that simply introducing a scale prior on the last-layer parameters can turn infinitely-wide neural networks of any architecture into a richer class of stochastic processes. With certain scale priors, we obtain heavy-tailed stochastic processes, and in the case of inverse gamma priors, we recover Student's t processes. We further analyze the distributions of the neural networks initialized with our prior setting and trained with gradient descents and obtain similar results as for NNGPs. We present a practical posterior-inference algorithm for the scale mixture of NNGPs and empirically demonstrate its usefulness on regression and classification tasks. In particular, we show that in both tasks, the heavy-tailed stochastic processes obtained from our framework are robust to out-of-distribution data.

Neural Circuit Diagrams: Robust Diagrams for the Communication, Implementation, and Analysis of Deep Learning Architectures

Diagrams matter. Unfortunately, the deep learning community has no standard method for diagramming architectures. The current combination of linear algebra notation and ad-hoc diagrams fails to offer the necessary precision to understand architectures in all their detail. However, this detail is critical for faithful implementation, mathematical analysis, further innovation, and ethical assurances. I present neural circuit diagrams, a graphical language tailored to the needs of communicating deep learning architectures. Neural circuit diagrams naturally keep track of the changing arrangement of data, precisely show how operations are broadcast over axes, and display the critical parallel behavior of linear operations. A lingering issue with existing diagramming methods is the inability to simultaneously express the detail of axes and the free arrangement of data, which neural circuit diagrams solve. Their compositional structure is analogous to code, creating a close correspondence between diagrams and implementation. In this work, I introduce neural circuit diagrams for an audience of machine learning researchers. After introducing neural circuit diagrams, I cover a host of architectures to show their utility and breed familiarity. This includes the transformer architecture, convolution (and its difficult-to-explain extensions), residual networks, the U-Net, and the vision transformer. I include a Jupyter notebook that provides evidence for the close correspondence between diagrams and code. Finally, I examine backpropagation using neural circuit diagrams. I show their utility in providing mathematical insight and analyzing algorithms' time and space complexities.