- Object-Aware Query Perturbation for Cross-Modal Image-Text Retrieval The pre-trained vision and language (V\&L) models have substantially improved the performance of cross-modal image-text retrieval. In general, however, V\&L models have limited retrieval performance for small objects because of the rough alignment between words and the small objects in the image. In contrast, it is known that human cognition is object-centric, and we pay more attention to important objects, even if they are small. To bridge this gap between the human cognition and the V\&L model's capability, we propose a cross-modal image-text retrieval framework based on ``object-aware query perturbation.'' The proposed method generates a key feature subspace of the detected objects and perturbs the corresponding queries using this subspace to improve the object awareness in the image. In our proposed method, object-aware cross-modal image-text retrieval is possible while keeping the rich expressive power and retrieval performance of existing V\&L models without additional fine-tuning. Comprehensive experiments on four public datasets show that our method outperforms conventional algorithms. 3 authors · Jul 17, 2024 1
2 Deep Equilibrium Object Detection Query-based object detectors directly decode image features into object instances with a set of learnable queries. These query vectors are progressively refined to stable meaningful representations through a sequence of decoder layers, and then used to directly predict object locations and categories with simple FFN heads. In this paper, we present a new query-based object detector (DEQDet) by designing a deep equilibrium decoder. Our DEQ decoder models the query vector refinement as the fixed point solving of an {implicit} layer and is equivalent to applying {infinite} steps of refinement. To be more specific to object decoding, we use a two-step unrolled equilibrium equation to explicitly capture the query vector refinement. Accordingly, we are able to incorporate refinement awareness into the DEQ training with the inexact gradient back-propagation (RAG). In addition, to stabilize the training of our DEQDet and improve its generalization ability, we devise the deep supervision scheme on the optimization path of DEQ with refinement-aware perturbation~(RAP). Our experiments demonstrate DEQDet converges faster, consumes less memory, and achieves better results than the baseline counterpart (AdaMixer). In particular, our DEQDet with ResNet50 backbone and 300 queries achieves the 49.5 mAP and 33.0 AP_s on the MS COCO benchmark under 2times training scheme (24 epochs). 3 authors · Aug 18, 2023