File size: 3,595 Bytes
d01cbdc
 
 
6bbb8f3
 
 
 
 
 
 
 
 
 
 
 
 
 
d01cbdc
 
 
 
 
 
 
8e708a6
826f0f7
d01cbdc
 
d357b02
 
d01cbdc
 
 
 
8e708a6
d01cbdc
 
 
4117a1b
 
 
f93a2a6
4117a1b
 
f93a2a6
 
 
 
8e708a6
f93a2a6
 
8e708a6
4117a1b
f93a2a6
4117a1b
 
 
 
 
 
 
 
 
 
f93a2a6
 
4117a1b
 
f93a2a6
 
 
4117a1b
f93a2a6
4117a1b
 
 
 
 
 
 
f93a2a6
4117a1b
f93a2a6
 
 
4117a1b
f93a2a6
 
 
4117a1b
f93a2a6
 
 
 
 
4117a1b
f93a2a6
 
4117a1b
f93a2a6
 
 
 
 
 
 
 
4117a1b
 
 
 
6bbb8f3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---
language:
- en
- mr
- hi
- gu
- pa
- te
- ta
- ml
- kn
- sd
- ne
- ur
- as
- bn
- or
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- gemma
- trl
base_model: google/gemma-2b
pipeline_tag: text-generation
---

<img src="https://github.com/Pmking27/AutoTalker/assets/97112558/96853321-e460-4464-a062-9bd1633964d8" width="600" height="600">

# Uploaded  model

- **Developed by:** pmking27
- **License:** apache-2.0
- **Finetuned from model :** google/gemma-2b

This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

### Running Model:

```python
# Importing necessary modules
from transformers import AutoModelForCausalLM, AutoTokenizer

# Setting the device to load the model onto (assuming GPU availability)
device = 'cuda'

# Loading the tokenizer for the model
tokenizer = AutoTokenizer.from_pretrained("pmking27/PrathameshLLM-2B")

# Loading the pre-trained model
model = AutoModelForCausalLM.from_pretrained("pmking27/PrathameshLLM-2B")

# Defining the Alpaca prompt template
alpaca_prompt = """
### Instruction:
{}

### Input:
{}

### Response:
{}"""

# Providing the input to the model
model_inputs = tokenizer(
[
    alpaca_prompt.format(
        '''
        You're an assistant trained to answer questions using the given context.
        
        context:

        General elections will be held in India from 19 April 2024 to 1 June 2024 to elect the 543 members of the 18th Lok Sabha. The elections will be held in seven phases and the results will be announced on 4 June 2024. This will be the largest-ever election in the world, surpassing the 2019 Indian general election, and will be the longest-held general elections in India with a total span of 44 days (excluding the first 1951–52 Indian general election). The incumbent prime minister Narendra Modi who completed a second term will be contesting elections for a third consecutive term.

        Approximately 960 million individuals out of a population of 1.4 billion are eligible to participate in the elections, which are expected to span a month for completion. The Legislative assembly elections in the states of Andhra Pradesh, Arunachal Pradesh, Odisha, and Sikkim will be held simultaneously with the general election, along with the by-elections for 35 seats among 16 states.
        ''', # instruction
        "भारतातील सार्वत्रिक निवडणुका किती टप्प्यात पार पडतील?", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt")

# Moving model inputs to the specified device
model_inputs.to(device)
model.to(device)

# Generating responses from the model
outputs = model.generate(**model_inputs, max_new_tokens=100)
decoded_output = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]

# Finding the start and end positions of the response
start_marker = "### Response:"
end_marker = "<eos>"
start_pos = decoded_output.find(start_marker) + len(start_marker)
end_pos = decoded_output.find(end_marker, start_pos)

# Extracting the response text
response_text = decoded_output[start_pos:end_pos].strip()

print(response_text)

```

### Output:

```markdown
भारतातील सार्वत्रिक निवडणुका 7 टप्प्यांमध्ये पार पडतील.
```



[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)