--- library_name: transformers license: mit base_model: gpt2 tags: - generated_from_trainer model-index: - name: cadgpt-gpt2-train results: [] --- # cadgpt-gpt2-train This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0298 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2987 | 0.0544 | 200 | 0.1816 | | 0.1236 | 0.1088 | 400 | 0.0997 | | 0.0876 | 0.1633 | 600 | 0.0692 | | 0.0703 | 0.2177 | 800 | 0.0554 | | 0.0601 | 0.2721 | 1000 | 0.0531 | | 0.0553 | 0.3265 | 1200 | 0.0453 | | 0.0514 | 0.3810 | 1400 | 0.0427 | | 0.0473 | 0.4354 | 1600 | 0.0403 | | 0.0463 | 0.4898 | 1800 | 0.0404 | | 0.0461 | 0.5442 | 2000 | 0.0386 | | 0.0428 | 0.5986 | 2200 | 0.0376 | | 0.0428 | 0.6531 | 2400 | 0.0367 | | 0.0395 | 0.7075 | 2600 | 0.0353 | | 0.0396 | 0.7619 | 2800 | 0.0351 | | 0.0388 | 0.8163 | 3000 | 0.0347 | | 0.0383 | 0.8707 | 3200 | 0.0350 | | 0.038 | 0.9252 | 3400 | 0.0359 | | 0.0371 | 0.9796 | 3600 | 0.0343 | | 0.0364 | 1.0340 | 3800 | 0.0328 | | 0.0372 | 1.0884 | 4000 | 0.0331 | | 0.0363 | 1.1429 | 4200 | 0.0324 | | 0.0351 | 1.1973 | 4400 | 0.0334 | | 0.0347 | 1.2517 | 4600 | 0.0317 | | 0.0342 | 1.3061 | 4800 | 0.0315 | | 0.0344 | 1.3605 | 5000 | 0.0314 | | 0.0337 | 1.4150 | 5200 | 0.0309 | | 0.0338 | 1.4694 | 5400 | 0.0310 | | 0.0334 | 1.5238 | 5600 | 0.0308 | | 0.0341 | 1.5782 | 5800 | 0.0306 | | 0.033 | 1.6327 | 6000 | 0.0319 | | 0.0335 | 1.6871 | 6200 | 0.0304 | | 0.0322 | 1.7415 | 6400 | 0.0302 | | 0.0329 | 1.7959 | 6600 | 0.0301 | | 0.0336 | 1.8503 | 6800 | 0.0300 | | 0.0328 | 1.9048 | 7000 | 0.0300 | | 0.0331 | 1.9592 | 7200 | 0.0298 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.22.0