pranjalsingh commited on
Commit
1fa37de
·
verified ·
1 Parent(s): eb1808c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -162
README.md CHANGED
@@ -1,202 +1,118 @@
1
- ---
2
- base_model: meta-llama/Llama-3.3-70B-Instruct
3
- library_name: peft
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
 
 
18
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
 
 
102
 
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
 
 
 
 
 
 
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
- - PEFT 0.12.0
 
 
 
 
 
 
 
 
 
 
1
 
2
 
3
+ # 🧠 Model Card: `pranjalsingh/alpaca-Llama-3.1-70B-Instruct-chat`
4
 
5
+ A LoRA fine-tuned version of the **meta-llama/Llama-3.1-70B-Instruct** model on the **Alpaca dataset**, optimized using **PEFT** and accelerated on **Intel Gaudi3 HPU** hardware.
 
 
6
 
7
+ ---
8
 
9
+ ## 📝 Model Summary
10
 
11
+ This model is a fine-tuned variant of LLaMA 3.1 70B Instruct, trained on the Alpaca dataset using Parameter-Efficient Fine-Tuning (PEFT) via LoRA. The goal of this fine-tuning was to improve instruction-following performance on lightweight resources, leveraging Intel’s Gaudi3 HPU for efficient training.
 
 
 
 
 
 
12
 
13
+ ---
14
 
15
+ ## 📄 Model Details
16
 
17
+ * **Base Model:** `meta-llama/Llama-3.1-70B-Instruct`
18
+ * **Fine-tuned Model:** `pranjalsingh/alpaca-Llama-3.1-70B-Instruct-chat`
19
+ * **Fine-tuned By:** *Pranjal Singh Thakur*
20
+ * **Dataset:** Stanford Alpaca dataset
21
+ * **PEFT Library:** PEFT v0.12.0
22
+ * **Fine-tuning Technique:** LoRA
23
+ * **Epochs:** 2
24
+ * **Training Hardware:** 1 Node with 8× Intel Gaudi3 HPUs
25
+ * **Language(s):** English
26
+ * **License:** Same as base model (LLaMA 3)
27
+ * **Credit:** Intel for providing Gaudi3 HPU infrastructure
28
 
29
+ ---
30
 
31
+ ## 🚀 Usage
32
 
33
  ### Direct Use
34
 
35
+ Use the model as an instruction-following chatbot or in downstream applications requiring LLM completion with lightweight deployment using LoRA adapters.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
+ ```python
38
+ from peft import PeftModel
39
+ from transformers import AutoModelForCausalLM, AutoTokenizer
40
 
41
+ base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-70B-Instruct")
42
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-70B-Instruct")
43
 
44
+ model = PeftModel.from_pretrained(base_model, "pranjalsingh/alpaca-Llama-3.1-70B-Instruct-chat")
45
 
46
+ inputs = tokenizer("### Instruction: Explain quantum computing in simple terms.", return_tensors="pt").to(model.device)
47
+ outputs = model.generate(**inputs, max_new_tokens=256)
48
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
49
+ ```
50
 
51
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ ## 📊 Evaluation Results
54
 
55
+ | Metric | Value |
56
+ | ---------------------- | --------- |
57
+ | Eval Accuracy | 73.27% |
58
+ | Eval Loss | 1.02 |
59
+ | Perplexity | 2.79 |
60
+ | Evaluation Runtime | 20.97s |
61
+ | Samples Evaluated | 101 |
62
+ | Samples/Sec | 4.82 |
63
+ | Max Memory Used (GB) | 126.2 |
64
+ | Total Available Memory | 126.54 GB |
65
+ | Memory Allocated (GB) | 41.06 |
66
 
67
+ ---
68
 
69
+ ## 🛠 Training Configuration
70
 
71
+ * **Epochs:** 2
72
+ * **Precision:** Likely mixed precision (bf16/fp16 on Gaudi3)
73
+ * **Hardware:** Intel Gaudi3 HPU (8 cards, 1 node)
74
+ * **Frameworks:** PEFT, Hugging Face Transformers
75
+ * **Batching & Tokenization:** Not explicitly provided
76
 
77
+ ---
78
 
79
+ ## 📦 Model Sources
80
 
81
+ * **Repository:** [Hugging Face Model Card](https://huggingface.co/pranjalsingh/alpaca-Llama-3.1-70B-Instruct-chat)
82
+ * **Dataset:** [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
83
+ * **Base Model:** [`meta-llama/Llama-3.1-70B-Instruct`](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct)
84
 
85
+ ---
86
 
87
+ ## ⚠️ Limitations & Risks
88
 
89
+ * Not suitable for multilingual tasks (trained only on English data).
90
+ * May reflect biases present in the Alpaca dataset.
91
+ * Not recommended for sensitive or safety-critical applications.
92
+ * Fine-tuning was conducted for instruction tasks — may not generalize to other domains.
93
 
94
+ ---
95
 
96
+ ## ♻️ Environmental Impact
97
 
98
+ | Parameter | Value |
99
+ | ----------------- | ----------------------------------------------------------- |
100
+ | Compute Platform | Intel Gaudi3 |
101
+ | Cards Used | 8× HPU |
102
+ | Training Duration | \~2 Epochs |
103
+ | Region | \[More info needed] |
104
+ | Emission Estimate | \[Use [MLCO2](https://mlco2.github.io/impact) to calculate] |
105
 
106
+ ---
107
 
108
+ ## 👨‍💻 Author & Acknowledgment
109
 
110
+ * **Author:** Pranjal Singh Thakur
111
+ * **Credit:** Intel (for compute resources using Gaudi3 HPU)
112
 
113
+ ---
114
 
115
+ ## 🔖 Citation
116
 
117
+ Coming soon.
 
118