Update README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,118 @@
|
|
1 |
-
---
|
2 |
-
base_model: meta-llama/Llama-3.3-70B-Instruct
|
3 |
-
library_name: peft
|
4 |
-
---
|
5 |
-
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
|
|
|
18 |
|
|
|
19 |
|
20 |
-
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
39 |
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
|
95 |
-
|
|
|
|
|
96 |
|
97 |
-
|
|
|
98 |
|
99 |
-
|
100 |
|
101 |
-
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
|
166 |
|
167 |
-
|
168 |
|
169 |
-
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
174 |
|
175 |
-
**
|
|
|
|
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
180 |
|
181 |
-
|
|
|
|
|
|
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
186 |
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
|
|
194 |
|
195 |
-
|
196 |
|
197 |
-
##
|
198 |
|
199 |
-
|
200 |
-
### Framework versions
|
201 |
|
202 |
-
- PEFT 0.12.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
|
3 |
+
# 🧠 Model Card: `pranjalsingh/alpaca-Llama-3.1-70B-Instruct-chat`
|
4 |
|
5 |
+
A LoRA fine-tuned version of the **meta-llama/Llama-3.1-70B-Instruct** model on the **Alpaca dataset**, optimized using **PEFT** and accelerated on **Intel Gaudi3 HPU** hardware.
|
|
|
|
|
6 |
|
7 |
+
---
|
8 |
|
9 |
+
## 📝 Model Summary
|
10 |
|
11 |
+
This model is a fine-tuned variant of LLaMA 3.1 70B Instruct, trained on the Alpaca dataset using Parameter-Efficient Fine-Tuning (PEFT) via LoRA. The goal of this fine-tuning was to improve instruction-following performance on lightweight resources, leveraging Intel’s Gaudi3 HPU for efficient training.
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
---
|
14 |
|
15 |
+
## 📄 Model Details
|
16 |
|
17 |
+
* **Base Model:** `meta-llama/Llama-3.1-70B-Instruct`
|
18 |
+
* **Fine-tuned Model:** `pranjalsingh/alpaca-Llama-3.1-70B-Instruct-chat`
|
19 |
+
* **Fine-tuned By:** *Pranjal Singh Thakur*
|
20 |
+
* **Dataset:** Stanford Alpaca dataset
|
21 |
+
* **PEFT Library:** PEFT v0.12.0
|
22 |
+
* **Fine-tuning Technique:** LoRA
|
23 |
+
* **Epochs:** 2
|
24 |
+
* **Training Hardware:** 1 Node with 8× Intel Gaudi3 HPUs
|
25 |
+
* **Language(s):** English
|
26 |
+
* **License:** Same as base model (LLaMA 3)
|
27 |
+
* **Credit:** Intel for providing Gaudi3 HPU infrastructure
|
28 |
|
29 |
+
---
|
30 |
|
31 |
+
## 🚀 Usage
|
32 |
|
33 |
### Direct Use
|
34 |
|
35 |
+
Use the model as an instruction-following chatbot or in downstream applications requiring LLM completion with lightweight deployment using LoRA adapters.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
```python
|
38 |
+
from peft import PeftModel
|
39 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
40 |
|
41 |
+
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-70B-Instruct")
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-70B-Instruct")
|
43 |
|
44 |
+
model = PeftModel.from_pretrained(base_model, "pranjalsingh/alpaca-Llama-3.1-70B-Instruct-chat")
|
45 |
|
46 |
+
inputs = tokenizer("### Instruction: Explain quantum computing in simple terms.", return_tensors="pt").to(model.device)
|
47 |
+
outputs = model.generate(**inputs, max_new_tokens=256)
|
48 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
49 |
+
```
|
50 |
|
51 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
## 📊 Evaluation Results
|
54 |
|
55 |
+
| Metric | Value |
|
56 |
+
| ---------------------- | --------- |
|
57 |
+
| Eval Accuracy | 73.27% |
|
58 |
+
| Eval Loss | 1.02 |
|
59 |
+
| Perplexity | 2.79 |
|
60 |
+
| Evaluation Runtime | 20.97s |
|
61 |
+
| Samples Evaluated | 101 |
|
62 |
+
| Samples/Sec | 4.82 |
|
63 |
+
| Max Memory Used (GB) | 126.2 |
|
64 |
+
| Total Available Memory | 126.54 GB |
|
65 |
+
| Memory Allocated (GB) | 41.06 |
|
66 |
|
67 |
+
---
|
68 |
|
69 |
+
## 🛠 Training Configuration
|
70 |
|
71 |
+
* **Epochs:** 2
|
72 |
+
* **Precision:** Likely mixed precision (bf16/fp16 on Gaudi3)
|
73 |
+
* **Hardware:** Intel Gaudi3 HPU (8 cards, 1 node)
|
74 |
+
* **Frameworks:** PEFT, Hugging Face Transformers
|
75 |
+
* **Batching & Tokenization:** Not explicitly provided
|
76 |
|
77 |
+
---
|
78 |
|
79 |
+
## 📦 Model Sources
|
80 |
|
81 |
+
* **Repository:** [Hugging Face Model Card](https://huggingface.co/pranjalsingh/alpaca-Llama-3.1-70B-Instruct-chat)
|
82 |
+
* **Dataset:** [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca)
|
83 |
+
* **Base Model:** [`meta-llama/Llama-3.1-70B-Instruct`](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct)
|
84 |
|
85 |
+
---
|
86 |
|
87 |
+
## ⚠️ Limitations & Risks
|
88 |
|
89 |
+
* Not suitable for multilingual tasks (trained only on English data).
|
90 |
+
* May reflect biases present in the Alpaca dataset.
|
91 |
+
* Not recommended for sensitive or safety-critical applications.
|
92 |
+
* Fine-tuning was conducted for instruction tasks — may not generalize to other domains.
|
93 |
|
94 |
+
---
|
95 |
|
96 |
+
## ♻️ Environmental Impact
|
97 |
|
98 |
+
| Parameter | Value |
|
99 |
+
| ----------------- | ----------------------------------------------------------- |
|
100 |
+
| Compute Platform | Intel Gaudi3 |
|
101 |
+
| Cards Used | 8× HPU |
|
102 |
+
| Training Duration | \~2 Epochs |
|
103 |
+
| Region | \[More info needed] |
|
104 |
+
| Emission Estimate | \[Use [MLCO2](https://mlco2.github.io/impact) to calculate] |
|
105 |
|
106 |
+
---
|
107 |
|
108 |
+
## 👨💻 Author & Acknowledgment
|
109 |
|
110 |
+
* **Author:** Pranjal Singh Thakur
|
111 |
+
* **Credit:** Intel (for compute resources using Gaudi3 HPU)
|
112 |
|
113 |
+
---
|
114 |
|
115 |
+
## 🔖 Citation
|
116 |
|
117 |
+
Coming soon.
|
|
|
118 |
|
|