Update README.md
Browse files
README.md
CHANGED
@@ -18,4 +18,114 @@ tags:
|
|
18 |
- text-generation-inference
|
19 |
- VLM
|
20 |
- Callisto
|
21 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
- text-generation-inference
|
19 |
- VLM
|
20 |
- Callisto
|
21 |
+
---
|
22 |
+
# **Callisto-OCR3-2B-Instruct**
|
23 |
+
|
24 |
+
The **Callisto-OCR3-2B-Instruct** model is a fine-tuned version of **Qwen/Qwen2-VL-2B-Instruct**, specifically optimized for **messy handwriting recognition**, **Optical Character Recognition (OCR)**, **English language understanding**, and **math problem solving with LaTeX formatting**. This model integrates a conversational approach with visual and textual understanding to handle multi-modal tasks effectively.
|
25 |
+
|
26 |
+
#### Key Enhancements:
|
27 |
+
|
28 |
+
* **SoTA understanding of images of various resolution & ratio**: Callisto-OCR3 achieves state-of-the-art performance on visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, MTVQA, etc.
|
29 |
+
|
30 |
+
* **Enhanced Handwriting OCR**: Optimized for recognizing and interpreting **messy handwriting** with high accuracy, making it ideal for digitizing handwritten documents and notes.
|
31 |
+
|
32 |
+
* **Understanding videos of 20min+**: Callisto-OCR3 can process long videos, enabling high-quality video-based question answering, transcription, and content generation.
|
33 |
+
|
34 |
+
* **Agent that can operate your mobiles, robots, etc.**: With advanced reasoning and decision-making, Callisto-OCR3 can be integrated with mobile phones, robots, and other devices to perform automated tasks based on visual and textual input.
|
35 |
+
|
36 |
+
* **Multilingual Support**: Besides English and Chinese, Callisto-OCR3 supports text recognition inside images in multiple languages, including European languages, Japanese, Korean, Arabic, and Vietnamese.
|
37 |
+
|
38 |
+
### How to Use
|
39 |
+
|
40 |
+
```python
|
41 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
42 |
+
from qwen_vl_utils import process_vision_info
|
43 |
+
|
44 |
+
# Load the model on the available device(s)
|
45 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
46 |
+
"prithivMLmods/Callisto-OCR3-2B-Instruct", torch_dtype="auto", device_map="auto"
|
47 |
+
)
|
48 |
+
|
49 |
+
# Enable flash_attention_2 for better acceleration and memory optimization
|
50 |
+
# model = Qwen2VLForConditionalGeneration.from_pretrained(
|
51 |
+
# "prithivMLmods/Callisto-OCR3-2B-Instruct",
|
52 |
+
# torch_dtype=torch.bfloat16,
|
53 |
+
# attn_implementation="flash_attention_2",
|
54 |
+
# device_map="auto",
|
55 |
+
# )
|
56 |
+
|
57 |
+
# Default processor
|
58 |
+
processor = AutoProcessor.from_pretrained("prithivMLmods/Callisto-OCR3-2B-Instruct")
|
59 |
+
|
60 |
+
# Customize visual token range for speed-memory balance
|
61 |
+
# min_pixels = 256*28*28
|
62 |
+
# max_pixels = 1280*28*28
|
63 |
+
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
|
64 |
+
|
65 |
+
messages = [
|
66 |
+
{
|
67 |
+
"role": "user",
|
68 |
+
"content": [
|
69 |
+
{
|
70 |
+
"type": "image",
|
71 |
+
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
|
72 |
+
},
|
73 |
+
{"type": "text", "text": "Recognize the handwriting in this image."},
|
74 |
+
],
|
75 |
+
}
|
76 |
+
]
|
77 |
+
|
78 |
+
# Preparation for inference
|
79 |
+
text = processor.apply_chat_template(
|
80 |
+
messages, tokenize=False, add_generation_prompt=True
|
81 |
+
)
|
82 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
83 |
+
inputs = processor(
|
84 |
+
text=[text],
|
85 |
+
images=image_inputs,
|
86 |
+
videos=video_inputs,
|
87 |
+
padding=True,
|
88 |
+
return_tensors="pt",
|
89 |
+
)
|
90 |
+
inputs = inputs.to("cuda")
|
91 |
+
|
92 |
+
# Inference: Generate the output
|
93 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
94 |
+
generated_ids_trimmed = [
|
95 |
+
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
96 |
+
]
|
97 |
+
output_text = processor.batch_decode(
|
98 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
99 |
+
)
|
100 |
+
print(output_text)
|
101 |
+
```
|
102 |
+
|
103 |
+
### Buffering Output
|
104 |
+
```python
|
105 |
+
buffer = ""
|
106 |
+
for new_text in streamer:
|
107 |
+
buffer += new_text
|
108 |
+
# Remove <|im_end|> or similar tokens from the output
|
109 |
+
buffer = buffer.replace("<|im_end|>", "")
|
110 |
+
yield buffer
|
111 |
+
```
|
112 |
+
|
113 |
+
### **Key Features**
|
114 |
+
|
115 |
+
1. **Advanced Handwriting OCR:**
|
116 |
+
- Excels at recognizing and transcribing **messy and cursive handwriting** into digital text with high accuracy.
|
117 |
+
|
118 |
+
2. **Vision-Language Integration:**
|
119 |
+
- Combines **image understanding** with **natural language processing** to convert images into text.
|
120 |
+
|
121 |
+
3. **Optical Character Recognition (OCR):**
|
122 |
+
- Extracts and processes textual information from images with precision.
|
123 |
+
|
124 |
+
4. **Math and LaTeX Support:**
|
125 |
+
- Solves math problems and outputs equations in **LaTeX format**.
|
126 |
+
|
127 |
+
5. **Conversational Capabilities:**
|
128 |
+
- Designed to handle **multi-turn interactions**, providing context-aware responses.
|
129 |
+
|
130 |
+
6. **Image-Text-to-Text Generation:**
|
131 |
+
- Inputs can include **images, text, or a combination**, and the model generates descriptive or problem-solving text.
|