File size: 3,782 Bytes
f5c95a3
 
 
 
 
 
 
 
 
 
 
1caa1b7
94ebe12
246c4bf
1caa1b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen3-0.6B
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- code
- general-reasoning
- moe
- math
---

![zdgdsfrged.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/T6be9aFyTWZSbt5-kMWh5.png)

# **Lynx-TinySync-0.6B**

> **Lynx-TinySync-0.6B** is a lightweight, high-performance model designed for **mathematical reasoning**, **code generation**, and **general-purpose inference**. Built on a custom modular dataset and powered by an efficient architecture, it excels in delivering structured, accurate outputs even in mid-resource environments. Despite its compact **0.6B parameter size**, it demonstrates remarkable proficiency in math, code, and technical language understanding.

> \[!note]
> GGUF: [https://huggingface.co/prithivMLmods/Lynx-TinySync-0.6B-GGUF](https://huggingface.co/prithivMLmods/Lynx-TinySync-0.6B-GGUF)

---

## **Key Features**

1. **Custom Modular Dataset Training**
   Fine-tuned using a handcrafted blend of math, code, and reasoning datasets, ensuring high performance in symbolic tasks and general queries.

2. **Mathematical Reasoning**
   Handles algebra, calculus, geometry, and symbolic logic with clarity—ideal for tutoring, educational support, and math competitions.

3. **Compact Code Assistant**
   Generates clean, efficient code in Python, JavaScript, and more—complete with explanations and bug-fix breakdowns.

4. **Structured Output Generation**
   Outputs in JSON, Markdown, LaTeX, and tabular formats—well-suited for documentation, structured data templates, and technical content.

5. **Multilingual Technical Reasoning**
   Supports math and code queries in 20+ languages with consistent output—enabling multilingual academic and professional use cases.

6. **Optimized for Low-Resource Deployment**
   With only 0.6B parameters, it's ideal for inference on edge devices, local machines, and GPU-constrained environments.

---

## **Quickstart with Transformers**

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/Lynx-TinySync-0.6B"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Solve the equation: 2(x - 4) + 3 = 11. Show all steps."

messages = [
    {"role": "system", "content": "You are a step-by-step math tutor."},
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

---

## **Intended Use**

* Mathematical problem solving and symbolic logic
* Lightweight code generation and debugging
* Generation of structured content (e.g., JSON, LaTeX, Markdown)
* Educational support across languages and domains
* Low-resource deployment in academic or field settings

---

## **Limitations**

* May underperform on long-form creative generation tasks
* Smaller context window may limit deep multi-turn reasoning
* Less capable in adversarial or abstract reasoning queries
* Technical multilingual use focused—general dialogue fluency limited

---

## **References**

1. [Qwen2.5 Technical Report](https://arxiv.org/pdf/2412.15115)
2. [YaRN: Efficient Context Window Extension of Large Language Models](https://arxiv.org/pdf/2309.00071)