Update README.md
Browse files
README.md
CHANGED
|
@@ -2,7 +2,22 @@
|
|
| 2 |
license: apache-2.0
|
| 3 |
datasets:
|
| 4 |
- jonathan-roberts1/NWPU-RESISC45
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
```py
|
| 8 |
Classification Report:
|
|
@@ -57,4 +72,135 @@ thermal power station 0.9482 0.9671 0.9576 700
|
|
| 57 |
accuracy 0.9532 31500
|
| 58 |
macro avg 0.9538 0.9532 0.9532 31500
|
| 59 |
weighted avg 0.9538 0.9532 0.9532 31500
|
| 60 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
| 3 |
datasets:
|
| 4 |
- jonathan-roberts1/NWPU-RESISC45
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- google/siglip2-base-patch16-224
|
| 9 |
+
pipeline_tag: image-classification
|
| 10 |
+
library_name: transformers
|
| 11 |
+
tags:
|
| 12 |
+
- RESISC45
|
| 13 |
+
- SigLIP2
|
| 14 |
---
|
| 15 |
+
|
| 16 |
+

|
| 17 |
+
|
| 18 |
+
# **RESISC45-SigLIP2**
|
| 19 |
+
|
| 20 |
+
> **RESISC45-SigLIP2** is a vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for **multi-label** image classification. It is specifically trained to recognize and tag multiple land use and land cover scene categories from the **RESISC45** dataset using the **SiglipForImageClassification** architecture.
|
| 21 |
|
| 22 |
```py
|
| 23 |
Classification Report:
|
|
|
|
| 72 |
accuracy 0.9532 31500
|
| 73 |
macro avg 0.9538 0.9532 0.9532 31500
|
| 74 |
weighted avg 0.9538 0.9532 0.9532 31500
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
---
|
| 78 |
+
|
| 79 |
+
## **Label Space: 45 Scene Categories**
|
| 80 |
+
|
| 81 |
+
The model predicts the presence of one or more of the following **45 scene categories**:
|
| 82 |
+
|
| 83 |
+
```
|
| 84 |
+
Class 0: "airplane"
|
| 85 |
+
Class 1: "airport"
|
| 86 |
+
Class 2: "baseball diamond"
|
| 87 |
+
Class 3: "basketball court"
|
| 88 |
+
Class 4: "beach"
|
| 89 |
+
Class 5: "bridge"
|
| 90 |
+
Class 6: "chaparral"
|
| 91 |
+
Class 7: "church"
|
| 92 |
+
Class 8: "circular farmland"
|
| 93 |
+
Class 9: "cloud"
|
| 94 |
+
Class 10: "commercial area"
|
| 95 |
+
Class 11: "dense residential"
|
| 96 |
+
Class 12: "desert"
|
| 97 |
+
Class 13: "forest"
|
| 98 |
+
Class 14: "freeway"
|
| 99 |
+
Class 15: "golf course"
|
| 100 |
+
Class 16: "ground track field"
|
| 101 |
+
Class 17: "harbor"
|
| 102 |
+
Class 18: "industrial area"
|
| 103 |
+
Class 19: "intersection"
|
| 104 |
+
Class 20: "island"
|
| 105 |
+
Class 21: "lake"
|
| 106 |
+
Class 22: "meadow"
|
| 107 |
+
Class 23: "medium residential"
|
| 108 |
+
Class 24: "mobile home park"
|
| 109 |
+
Class 25: "mountain"
|
| 110 |
+
Class 26: "overpass"
|
| 111 |
+
Class 27: "palace"
|
| 112 |
+
Class 28: "parking lot"
|
| 113 |
+
Class 29: "railway"
|
| 114 |
+
Class 30: "railway station"
|
| 115 |
+
Class 31: "rectangular farmland"
|
| 116 |
+
Class 32: "river"
|
| 117 |
+
Class 33: "roundabout"
|
| 118 |
+
Class 34: "runway"
|
| 119 |
+
Class 35: "sea ice"
|
| 120 |
+
Class 36: "ship"
|
| 121 |
+
Class 37: "snowberg"
|
| 122 |
+
Class 38: "sparse residential"
|
| 123 |
+
Class 39: "stadium"
|
| 124 |
+
Class 40: "storage tank"
|
| 125 |
+
Class 41: "tennis court"
|
| 126 |
+
Class 42: "terrace"
|
| 127 |
+
Class 43: "thermal power station"
|
| 128 |
+
Class 44: "wetland"
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
---
|
| 132 |
+
|
| 133 |
+
## **Install dependencies**
|
| 134 |
+
|
| 135 |
+
```bash
|
| 136 |
+
pip install -q transformers torch pillow gradio
|
| 137 |
+
```
|
| 138 |
+
|
| 139 |
+
---
|
| 140 |
+
|
| 141 |
+
## **Inference Code**
|
| 142 |
+
|
| 143 |
+
```python
|
| 144 |
+
import gradio as gr
|
| 145 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 146 |
+
from PIL import Image
|
| 147 |
+
import torch
|
| 148 |
+
|
| 149 |
+
# Load model and processor
|
| 150 |
+
model_name = "prithivMLmods/RESISC45-SigLIP2" # Update to your actual Hugging Face model path
|
| 151 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 152 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 153 |
+
|
| 154 |
+
# Label map
|
| 155 |
+
id2label = {
|
| 156 |
+
"0": "airplane", "1": "airport", "2": "baseball diamond", "3": "basketball court", "4": "beach",
|
| 157 |
+
"5": "bridge", "6": "chaparral", "7": "church", "8": "circular farmland", "9": "cloud",
|
| 158 |
+
"10": "commercial area", "11": "dense residential", "12": "desert", "13": "forest", "14": "freeway",
|
| 159 |
+
"15": "golf course", "16": "ground track field", "17": "harbor", "18": "industrial area", "19": "intersection",
|
| 160 |
+
"20": "island", "21": "lake", "22": "meadow", "23": "medium residential", "24": "mobile home park",
|
| 161 |
+
"25": "mountain", "26": "overpass", "27": "palace", "28": "parking lot", "29": "railway",
|
| 162 |
+
"30": "railway station", "31": "rectangular farmland", "32": "river", "33": "roundabout", "34": "runway",
|
| 163 |
+
"35": "sea ice", "36": "ship", "37": "snowberg", "38": "sparse residential", "39": "stadium",
|
| 164 |
+
"40": "storage tank", "41": "tennis court", "42": "terrace", "43": "thermal power station", "44": "wetland"
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
def classify_resisc_image(image):
|
| 168 |
+
image = Image.fromarray(image).convert("RGB")
|
| 169 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 170 |
+
|
| 171 |
+
with torch.no_grad():
|
| 172 |
+
outputs = model(**inputs)
|
| 173 |
+
logits = outputs.logits
|
| 174 |
+
probs = torch.sigmoid(logits).squeeze().tolist()
|
| 175 |
+
|
| 176 |
+
threshold = 0.5
|
| 177 |
+
predictions = {
|
| 178 |
+
id2label[str(i)]: round(probs[i], 3)
|
| 179 |
+
for i in range(len(probs)) if probs[i] >= threshold
|
| 180 |
+
}
|
| 181 |
+
|
| 182 |
+
return predictions or {"None Detected": 0.0}
|
| 183 |
+
|
| 184 |
+
# Gradio Interface
|
| 185 |
+
iface = gr.Interface(
|
| 186 |
+
fn=classify_resisc_image,
|
| 187 |
+
inputs=gr.Image(type="numpy"),
|
| 188 |
+
outputs=gr.Label(label="Predicted Scene Categories"),
|
| 189 |
+
title="RESISC45-SigLIP2",
|
| 190 |
+
description="Upload a satellite image to detect multiple land use and land cover categories (e.g., airport, forest, mountain)."
|
| 191 |
+
)
|
| 192 |
+
|
| 193 |
+
if __name__ == "__main__":
|
| 194 |
+
iface.launch()
|
| 195 |
+
```
|
| 196 |
+
|
| 197 |
+
---
|
| 198 |
+
|
| 199 |
+
## **Intended Use**
|
| 200 |
+
|
| 201 |
+
The **RESISC45-SigLIP2** model is ideal for multi-label classification tasks involving remote sensing imagery. Use cases include:
|
| 202 |
+
|
| 203 |
+
- **Remote Sensing Analysis** – Label elements in aerial/satellite images.
|
| 204 |
+
- **Urban Planning** – Identify urban structures and landscape features.
|
| 205 |
+
- **Geospatial Intelligence** – Aid in automated image interpretation pipelines.
|
| 206 |
+
- **Environmental Monitoring** – Track natural landforms and changes.
|