--- library_name: transformers tags: - text-generation - paraphrase - gpt2 - causal-lm - transformers - pytorch license: mit datasets: - HHousen/ParaSCI language: - en base_model: - openai-community/gpt2 pipeline_tag: text-generation --- # Model Card for `gpt2-parasciparaphrase` ## 🧠 Model Summary This model is a fine-tuned version of [GPT-2](https://huggingface.co/gpt2) on the [ParaSCI dataset](https://huggingface.co/datasets/HHousen/ParaSCI) for paraphrase generation. It takes a sentence as input and generates a paraphrased version of that sentence. --- ## 📋 Model Details - **Base model:** GPT-2 (`gpt2`) - **Task:** Paraphrase generation (Causal Language Modeling) - **Language:** English - **Training data:** [HHousen/ParaSCI](https://huggingface.co/datasets/HHousen/ParaSCI) - **Training steps:** 1 epoch on ~270k examples - **Precision:** `fp16` mixed precision - **Hardware used:** Tesla T4 (Kaggle Notebook GPU) - **Framework:** 🤗 Transformers, PyTorch - **Trained by:** [Your Name or HF Username] - **License:** MIT --- ## 💡 Intended Use ### ✅ Direct Use - Generate paraphrased versions of input English sentences in a general academic/technical writing context. ### 🚫 Out-of-Scope Use - Not suitable for paraphrasing code, informal language, or other languages (non-English). - Not tested for fairness, bias, or ethical use in downstream applications. --- ## 📊 Evaluation - **Qualitative Evaluation:** Manual checks indicate coherent paraphrased outputs. - **Automatic Metrics:** Not yet reported. --- ## 🛠 Training Details - **Dataset:** ParaSCI (`sentence1` → `sentence2`) - **Preprocessing:** Concatenated prompt `paraphrase this sentence: {sentence1}\n{sentence2}` - **Tokenizer:** GPT-2 tokenizer with `pad_token = eos_token` - **Batch size:** 8 - **Epochs:** 1 - **Learning rate:** 5e-5 - **Logging and checkpointing:** Every 500 steps, using Weights & Biases (`wandb`) - **Max sequence length:** 256 tokens --- ## 🏁 How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("your-username/gpt2-parasciparaphrase") tokenizer = AutoTokenizer.from_pretrained("your-username/gpt2-parasciparaphrase") input_text = "paraphrase this sentence: AI models can help in automating tasks.\n" input_ids = tokenizer.encode(input_text, return_tensors="pt") output = model.generate(input_ids, max_new_tokens=50, do_sample=True, top_k=50, top_p=0.95) print(tokenizer.decode(output[0], skip_special_tokens=True))