puar-playground commited on
Commit
767fd09
·
verified ·
1 Parent(s): a6c614f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +131 -184
README.md CHANGED
@@ -3,199 +3,146 @@ base_model: OpenGVLab/InternVL2-4B
3
  library_name: peft
4
  ---
5
 
6
- # Model Card for Model ID
7
- <!-- Provide a quick summary of what the model is/does. -->
8
 
 
 
 
9
 
10
-
11
- ## Model Details
12
-
13
- ### Model Description
14
-
15
- <!-- Provide a longer summary of what this model is. -->
16
-
17
-
18
-
19
- - **Developed by:** [More Information Needed]
20
- - **Funded by [optional]:** [More Information Needed]
21
- - **Shared by [optional]:** [More Information Needed]
22
- - **Model type:** [More Information Needed]
23
- - **Language(s) (NLP):** [More Information Needed]
24
- - **License:** [More Information Needed]
25
- - **Finetuned from model [optional]:** [More Information Needed]
26
-
27
- ### Model Sources [optional]
28
 
29
  <!-- Provide the basic links for the model. -->
30
 
31
- - **Repository:** [More Information Needed]
32
- - **Paper [optional]:** [More Information Needed]
33
- - **Demo [optional]:** [More Information Needed]
34
 
35
  ## Uses
36
-
37
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
-
39
- ### Direct Use
40
-
41
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
-
43
- [More Information Needed]
44
-
45
- ### Downstream Use [optional]
46
-
47
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
-
49
- [More Information Needed]
50
-
51
- ### Out-of-Scope Use
52
-
53
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
-
55
- [More Information Needed]
56
-
57
- ## Bias, Risks, and Limitations
58
-
59
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
-
61
- [More Information Needed]
62
-
63
- ### Recommendations
64
-
65
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
-
67
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
-
69
- ## How to Get Started with the Model
70
-
71
- Use the code below to get started with the model.
72
-
73
- [More Information Needed]
74
-
75
- ## Training Details
76
-
77
- ### Training Data
78
-
79
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
-
81
- [More Information Needed]
82
-
83
- ### Training Procedure
84
-
85
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
-
87
- #### Preprocessing [optional]
88
-
89
- [More Information Needed]
90
-
91
-
92
- #### Training Hyperparameters
93
-
94
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
-
96
- #### Speeds, Sizes, Times [optional]
97
-
98
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
-
100
- [More Information Needed]
101
-
102
- ## Evaluation
103
-
104
- <!-- This section describes the evaluation protocols and provides the results. -->
105
-
106
- ### Testing Data, Factors & Metrics
107
-
108
- #### Testing Data
109
-
110
- <!-- This should link to a Dataset Card if possible. -->
111
-
112
- [More Information Needed]
113
-
114
- #### Factors
115
-
116
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
117
-
118
- [More Information Needed]
119
-
120
- #### Metrics
121
-
122
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
-
124
- [More Information Needed]
125
-
126
- ### Results
127
-
128
- [More Information Needed]
129
-
130
- #### Summary
131
-
132
-
133
-
134
- ## Model Examination [optional]
135
-
136
- <!-- Relevant interpretability work for the model goes here -->
137
-
138
- [More Information Needed]
139
-
140
- ## Environmental Impact
141
-
142
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
-
144
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
-
146
- - **Hardware Type:** [More Information Needed]
147
- - **Hours used:** [More Information Needed]
148
- - **Cloud Provider:** [More Information Needed]
149
- - **Compute Region:** [More Information Needed]
150
- - **Carbon Emitted:** [More Information Needed]
151
-
152
- ## Technical Specifications [optional]
153
-
154
- ### Model Architecture and Objective
155
-
156
- [More Information Needed]
157
-
158
- ### Compute Infrastructure
159
-
160
- [More Information Needed]
161
-
162
- #### Hardware
163
-
164
- [More Information Needed]
165
-
166
- #### Software
167
-
168
- [More Information Needed]
169
 
170
  ## Citation [optional]
171
 
172
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
173
-
174
- **BibTeX:**
175
-
176
- [More Information Needed]
177
-
178
- **APA:**
179
-
180
- [More Information Needed]
181
-
182
- ## Glossary [optional]
183
-
184
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
185
-
186
- [More Information Needed]
187
-
188
- ## More Information [optional]
189
-
190
- [More Information Needed]
191
-
192
- ## Model Card Authors [optional]
193
-
194
- [More Information Needed]
195
-
196
- ## Model Card Contact
197
 
198
- [More Information Needed]
199
- ### Framework versions
200
 
201
- - PEFT 0.11.1
 
3
  library_name: peft
4
  ---
5
 
6
+ # Model Details
 
7
 
8
+ - **Developed by:** Jian Chen
9
+ - **Model type:** MLLM-based encoder
10
+ - **Finetuned from model:** [OpenGVLab/InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B)
11
 
12
+ ## Model Sources [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  <!-- Provide the basic links for the model. -->
15
 
16
+ - **Repository:** [SV-RAG](https://github.com/puar-playground/SV-RAG)
17
+ - **Paper [optional]:** [SV-RAG: LoRA-Contextualizing Adaptation of Large Multimodal Models for Long Document Understanding](https://arxiv.org/abs/2411.01106)
 
18
 
19
  ## Uses
20
+ A demo script is provided in the [GitHub](https://github.com/puar-playground/SV-RAG/blob/main/test_retrieval.py)
21
+
22
+ Alternatively, this code provides a more detailed breakdown of the computation. The [`colpali_engine`](https://github.com/puar-playground/SV-RAG/tree/main/colpali_engine) used is customized and is available in the GitHub.
23
+ ```
24
+ from colpali_engine.models import ColInternvl2_4b, ColInternProcessor
25
+
26
+ class ColInternVL2Retriever(BaseRetriever):
27
+ """Retriever class using ColInternVL2 for multimodal retrieval."""
28
+
29
+ def __init__(self, model_name="puar-playground/Col-InternVL2-4B", device="cuda" if torch.cuda.is_available() else "cpu"):
30
+ """
31
+ Initializes the ColInternVL2 model.
32
+
33
+ Args:
34
+ model_name (str): The model identifier.
35
+ device (str): Device to run the model on ('cuda' or 'cpu').
36
+ """
37
+ os.system('pip install transformers==4.47.1')
38
+ self.multimodel = True
39
+ self.device = device
40
+
41
+ self.model = ColInternvl2_4b.from_pretrained(
42
+ model_name,
43
+ torch_dtype=torch.bfloat16,
44
+ device_map=device).eval()
45
+
46
+ self.processor = ColInternProcessor('OpenGVLab/InternVL2-4B')
47
+
48
+ def process_text(self, query_list: List[str], batch_size: int = 4):
49
+ """
50
+ Processes a list of text queries into embeddings using ColPhi in batches.
51
+
52
+ Args:
53
+ query_list (List[str]): List of query texts.
54
+ batch_size (int): Number of queries processed per batch.
55
+
56
+ Returns:
57
+ torch.Tensor: Concatenated embeddings for all queries.
58
+ """
59
+ all_embeddings = []
60
+
61
+ for i in range(0, len(query_list), batch_size):
62
+ batch_queries = query_list[i : i + batch_size]
63
+
64
+ # Convert queries to model-compatible format
65
+ batch_inputs = self.processor.process_queries(batch_queries).to(self.model.device)
66
+
67
+ with torch.no_grad():
68
+ batch_embeddings = self.model(**batch_inputs)
69
+
70
+ all_embeddings.append(batch_embeddings.to("cpu"))
71
+
72
+ # Concatenate all batch outputs into a single tensor
73
+ all_embeddings = self.pad_and_cat_tensors(all_embeddings)
74
+
75
+ return all_embeddings
76
+
77
+ @staticmethod
78
+ def pad_and_cat_tensors(tensor_list):
79
+ # Find the maximum length of the second dimension (x_i) across all tensors
80
+ max_x = max(tensor.size(1) for tensor in tensor_list)
81
+
82
+ # Pad tensors to have the same size in the second dimension
83
+ padded_tensors = []
84
+ for tensor in tensor_list:
85
+ padding_size = max_x - tensor.size(1)
86
+ # Pad with zeros on the right in the second dimension
87
+ padded_tensor = torch.nn.functional.pad(tensor, (0, 0, 0, padding_size))
88
+ padded_tensors.append(padded_tensor)
89
+
90
+ # Concatenate the padded tensors along the first dimension
91
+ result_tensor = torch.cat(padded_tensors, dim=0)
92
+
93
+ return result_tensor
94
+
95
+ def process_image(self, image_dir_list: List[str]):
96
+ """Processes images into embeddings using ColInternVL2."""
97
+ def process_images_in_batches(processor, img_dir_list, model, batch_size=2):
98
+ all_embeddings = []
99
+
100
+ # Split img_dir_list into batches
101
+ for img_dir in img_dir_list:
102
+
103
+ img = Image.open(img_dir)
104
+
105
+ # Process the batch of images
106
+ batch_features = processor.process_images(img)
107
+
108
+ # Extract the tensor from the BatchFeature object
109
+ batch_images = {k: v.to(model.device) for k, v in batch_features.items()}
110
+
111
+ # Assuming the model expects a specific input (e.g., 'pixel_values')
112
+ embeddings = model(**batch_images)
113
+
114
+ # Move embeddings to CPU and append to the list
115
+ embeddings = embeddings.to("cpu")
116
+ all_embeddings.append(embeddings)
117
+
118
+ # Concatenate all processed batches into a single tensor
119
+ all_embeddings = self.pad_and_cat_tensors(all_embeddings)
120
+ return all_embeddings
121
+
122
+ # Forward pass
123
+ with torch.no_grad():
124
+ # image_embeddings = model(**batch_images)
125
+ image_embeddings = process_images_in_batches(self.processor, image_dir_list, self.model)
126
+
127
+ return image_embeddings
128
+
129
+ def compute_similarity(self, text_embeddings, image_embeddings):
130
+ """ Computes cosine similarity between text and image embeddings. """
131
+ scores = self.processor.score_multi_vector(text_embeddings, image_embeddings)
132
+ return scores
133
+
134
+ def retrieve(self, query_list: str, image_list: List[str]):
135
+
136
+ text_embeddings = self.process_text(query_list)
137
+ image_embeddings = self.process_image(image_list)
138
+
139
+ similarity_score = self.compute_similarity(text_embeddings, image_embeddings)
140
+ values, top_indices = torch.tensor(similarity_score).sort(descending=True)
141
+
142
+ return values, top_indices
143
+ ```
 
 
 
 
 
 
 
 
 
144
 
145
  ## Citation [optional]
146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
 
 
 
148