Update README.md
Browse files
README.md
CHANGED
@@ -3,199 +3,146 @@ base_model: OpenGVLab/InternVL2-4B
|
|
3 |
library_name: peft
|
4 |
---
|
5 |
|
6 |
-
# Model
|
7 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
## Model Details
|
12 |
-
|
13 |
-
### Model Description
|
14 |
-
|
15 |
-
<!-- Provide a longer summary of what this model is. -->
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
- **Developed by:** [More Information Needed]
|
20 |
-
- **Funded by [optional]:** [More Information Needed]
|
21 |
-
- **Shared by [optional]:** [More Information Needed]
|
22 |
-
- **Model type:** [More Information Needed]
|
23 |
-
- **Language(s) (NLP):** [More Information Needed]
|
24 |
-
- **License:** [More Information Needed]
|
25 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
-
|
27 |
-
### Model Sources [optional]
|
28 |
|
29 |
<!-- Provide the basic links for the model. -->
|
30 |
|
31 |
-
- **Repository:** [
|
32 |
-
- **Paper [optional]:** [
|
33 |
-
- **Demo [optional]:** [More Information Needed]
|
34 |
|
35 |
## Uses
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
[More Information Needed]
|
161 |
-
|
162 |
-
#### Hardware
|
163 |
-
|
164 |
-
[More Information Needed]
|
165 |
-
|
166 |
-
#### Software
|
167 |
-
|
168 |
-
[More Information Needed]
|
169 |
|
170 |
## Citation [optional]
|
171 |
|
172 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
-
|
174 |
-
**BibTeX:**
|
175 |
-
|
176 |
-
[More Information Needed]
|
177 |
-
|
178 |
-
**APA:**
|
179 |
-
|
180 |
-
[More Information Needed]
|
181 |
-
|
182 |
-
## Glossary [optional]
|
183 |
-
|
184 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
-
|
186 |
-
[More Information Needed]
|
187 |
-
|
188 |
-
## More Information [optional]
|
189 |
-
|
190 |
-
[More Information Needed]
|
191 |
-
|
192 |
-
## Model Card Authors [optional]
|
193 |
-
|
194 |
-
[More Information Needed]
|
195 |
-
|
196 |
-
## Model Card Contact
|
197 |
|
198 |
-
[More Information Needed]
|
199 |
-
### Framework versions
|
200 |
|
201 |
-
- PEFT 0.11.1
|
|
|
3 |
library_name: peft
|
4 |
---
|
5 |
|
6 |
+
# Model Details
|
|
|
7 |
|
8 |
+
- **Developed by:** Jian Chen
|
9 |
+
- **Model type:** MLLM-based encoder
|
10 |
+
- **Finetuned from model:** [OpenGVLab/InternVL2-4B](https://huggingface.co/OpenGVLab/InternVL2-4B)
|
11 |
|
12 |
+
## Model Sources [optional]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
<!-- Provide the basic links for the model. -->
|
15 |
|
16 |
+
- **Repository:** [SV-RAG](https://github.com/puar-playground/SV-RAG)
|
17 |
+
- **Paper [optional]:** [SV-RAG: LoRA-Contextualizing Adaptation of Large Multimodal Models for Long Document Understanding](https://arxiv.org/abs/2411.01106)
|
|
|
18 |
|
19 |
## Uses
|
20 |
+
A demo script is provided in the [GitHub](https://github.com/puar-playground/SV-RAG/blob/main/test_retrieval.py)
|
21 |
+
|
22 |
+
Alternatively, this code provides a more detailed breakdown of the computation. The [`colpali_engine`](https://github.com/puar-playground/SV-RAG/tree/main/colpali_engine) used is customized and is available in the GitHub.
|
23 |
+
```
|
24 |
+
from colpali_engine.models import ColInternvl2_4b, ColInternProcessor
|
25 |
+
|
26 |
+
class ColInternVL2Retriever(BaseRetriever):
|
27 |
+
"""Retriever class using ColInternVL2 for multimodal retrieval."""
|
28 |
+
|
29 |
+
def __init__(self, model_name="puar-playground/Col-InternVL2-4B", device="cuda" if torch.cuda.is_available() else "cpu"):
|
30 |
+
"""
|
31 |
+
Initializes the ColInternVL2 model.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
model_name (str): The model identifier.
|
35 |
+
device (str): Device to run the model on ('cuda' or 'cpu').
|
36 |
+
"""
|
37 |
+
os.system('pip install transformers==4.47.1')
|
38 |
+
self.multimodel = True
|
39 |
+
self.device = device
|
40 |
+
|
41 |
+
self.model = ColInternvl2_4b.from_pretrained(
|
42 |
+
model_name,
|
43 |
+
torch_dtype=torch.bfloat16,
|
44 |
+
device_map=device).eval()
|
45 |
+
|
46 |
+
self.processor = ColInternProcessor('OpenGVLab/InternVL2-4B')
|
47 |
+
|
48 |
+
def process_text(self, query_list: List[str], batch_size: int = 4):
|
49 |
+
"""
|
50 |
+
Processes a list of text queries into embeddings using ColPhi in batches.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
query_list (List[str]): List of query texts.
|
54 |
+
batch_size (int): Number of queries processed per batch.
|
55 |
+
|
56 |
+
Returns:
|
57 |
+
torch.Tensor: Concatenated embeddings for all queries.
|
58 |
+
"""
|
59 |
+
all_embeddings = []
|
60 |
+
|
61 |
+
for i in range(0, len(query_list), batch_size):
|
62 |
+
batch_queries = query_list[i : i + batch_size]
|
63 |
+
|
64 |
+
# Convert queries to model-compatible format
|
65 |
+
batch_inputs = self.processor.process_queries(batch_queries).to(self.model.device)
|
66 |
+
|
67 |
+
with torch.no_grad():
|
68 |
+
batch_embeddings = self.model(**batch_inputs)
|
69 |
+
|
70 |
+
all_embeddings.append(batch_embeddings.to("cpu"))
|
71 |
+
|
72 |
+
# Concatenate all batch outputs into a single tensor
|
73 |
+
all_embeddings = self.pad_and_cat_tensors(all_embeddings)
|
74 |
+
|
75 |
+
return all_embeddings
|
76 |
+
|
77 |
+
@staticmethod
|
78 |
+
def pad_and_cat_tensors(tensor_list):
|
79 |
+
# Find the maximum length of the second dimension (x_i) across all tensors
|
80 |
+
max_x = max(tensor.size(1) for tensor in tensor_list)
|
81 |
+
|
82 |
+
# Pad tensors to have the same size in the second dimension
|
83 |
+
padded_tensors = []
|
84 |
+
for tensor in tensor_list:
|
85 |
+
padding_size = max_x - tensor.size(1)
|
86 |
+
# Pad with zeros on the right in the second dimension
|
87 |
+
padded_tensor = torch.nn.functional.pad(tensor, (0, 0, 0, padding_size))
|
88 |
+
padded_tensors.append(padded_tensor)
|
89 |
+
|
90 |
+
# Concatenate the padded tensors along the first dimension
|
91 |
+
result_tensor = torch.cat(padded_tensors, dim=0)
|
92 |
+
|
93 |
+
return result_tensor
|
94 |
+
|
95 |
+
def process_image(self, image_dir_list: List[str]):
|
96 |
+
"""Processes images into embeddings using ColInternVL2."""
|
97 |
+
def process_images_in_batches(processor, img_dir_list, model, batch_size=2):
|
98 |
+
all_embeddings = []
|
99 |
+
|
100 |
+
# Split img_dir_list into batches
|
101 |
+
for img_dir in img_dir_list:
|
102 |
+
|
103 |
+
img = Image.open(img_dir)
|
104 |
+
|
105 |
+
# Process the batch of images
|
106 |
+
batch_features = processor.process_images(img)
|
107 |
+
|
108 |
+
# Extract the tensor from the BatchFeature object
|
109 |
+
batch_images = {k: v.to(model.device) for k, v in batch_features.items()}
|
110 |
+
|
111 |
+
# Assuming the model expects a specific input (e.g., 'pixel_values')
|
112 |
+
embeddings = model(**batch_images)
|
113 |
+
|
114 |
+
# Move embeddings to CPU and append to the list
|
115 |
+
embeddings = embeddings.to("cpu")
|
116 |
+
all_embeddings.append(embeddings)
|
117 |
+
|
118 |
+
# Concatenate all processed batches into a single tensor
|
119 |
+
all_embeddings = self.pad_and_cat_tensors(all_embeddings)
|
120 |
+
return all_embeddings
|
121 |
+
|
122 |
+
# Forward pass
|
123 |
+
with torch.no_grad():
|
124 |
+
# image_embeddings = model(**batch_images)
|
125 |
+
image_embeddings = process_images_in_batches(self.processor, image_dir_list, self.model)
|
126 |
+
|
127 |
+
return image_embeddings
|
128 |
+
|
129 |
+
def compute_similarity(self, text_embeddings, image_embeddings):
|
130 |
+
""" Computes cosine similarity between text and image embeddings. """
|
131 |
+
scores = self.processor.score_multi_vector(text_embeddings, image_embeddings)
|
132 |
+
return scores
|
133 |
+
|
134 |
+
def retrieve(self, query_list: str, image_list: List[str]):
|
135 |
+
|
136 |
+
text_embeddings = self.process_text(query_list)
|
137 |
+
image_embeddings = self.process_image(image_list)
|
138 |
+
|
139 |
+
similarity_score = self.compute_similarity(text_embeddings, image_embeddings)
|
140 |
+
values, top_indices = torch.tensor(similarity_score).sort(descending=True)
|
141 |
+
|
142 |
+
return values, top_indices
|
143 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
## Citation [optional]
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
|
|
|
|
148 |
|
|