Update README.md
Browse files
README.md
CHANGED
@@ -295,11 +295,8 @@ print(f"Peak Memory Usage: {mem:.02f} GB")
|
|
295 |
| | Phi-4 mini-Ins | Phi-4-mini-instruct-FP8 |
|
296 |
| latency (batch_size=1) | 1.61s | 1.25s (1.29x speedup) |
|
297 |
| latency (batch_size=256) | 5.16s | 4.89s (1.05x speedup) |
|
298 |
-
| serving (num_prompts=1) | 1.37 req/s | 1.66 req/s (1.21x speedup) |
|
299 |
-
| serving (num_prompts=1000) | 62.55 req/s | 72.56 req/s (1.16x speedup) |
|
300 |
|
301 |
Note the result of latency (benchmark_latency) is in seconds, and serving (benchmark_serving) is in number of requests per second.
|
302 |
-
Note the result is not using fbgemm kernels, (no `fbgemm-gpu-genai` installed), fbgemm kernels has less speedup when num_prompts is 1000 currently.
|
303 |
|
304 |
<details>
|
305 |
<summary> Reproduce Model Performance Results </summary>
|
@@ -334,41 +331,6 @@ python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model
|
|
334 |
VLLM_DISABLE_COMPILE_CACHE=1 python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model pytorch/Phi-4-mini-instruct-FP8 --batch-size 1
|
335 |
```
|
336 |
|
337 |
-
## benchmark_serving
|
338 |
-
|
339 |
-
We benchmarked the throughput in a serving environment.
|
340 |
-
|
341 |
-
Download sharegpt dataset:
|
342 |
-
|
343 |
-
```Shell
|
344 |
-
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
345 |
-
```
|
346 |
-
|
347 |
-
Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks
|
348 |
-
|
349 |
-
Note: you can change the number of prompts to be benchmarked with `--num-prompts` argument for `benchmark_serving` script.
|
350 |
-
### baseline
|
351 |
-
Server:
|
352 |
-
```Shell
|
353 |
-
vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3
|
354 |
-
```
|
355 |
-
|
356 |
-
Client:
|
357 |
-
```Shell
|
358 |
-
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1
|
359 |
-
```
|
360 |
-
|
361 |
-
### FP8
|
362 |
-
Server:
|
363 |
-
```Shell
|
364 |
-
VLLM_DISABLE_COMPILE_CACHE=1 vllm serve pytorch/Phi-4-mini-instruct-FP8 --tokenizer microsoft/Phi-4-mini-instruct -O3
|
365 |
-
```
|
366 |
-
|
367 |
-
Client:
|
368 |
-
```Shell
|
369 |
-
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model pytorch/Phi-4-mini-instruct-FP8 --num-prompts 1
|
370 |
-
```
|
371 |
-
|
372 |
</details>
|
373 |
|
374 |
# Paper: TorchAO: PyTorch-Native Training-to-Serving Model Optimization
|
|
|
295 |
| | Phi-4 mini-Ins | Phi-4-mini-instruct-FP8 |
|
296 |
| latency (batch_size=1) | 1.61s | 1.25s (1.29x speedup) |
|
297 |
| latency (batch_size=256) | 5.16s | 4.89s (1.05x speedup) |
|
|
|
|
|
298 |
|
299 |
Note the result of latency (benchmark_latency) is in seconds, and serving (benchmark_serving) is in number of requests per second.
|
|
|
300 |
|
301 |
<details>
|
302 |
<summary> Reproduce Model Performance Results </summary>
|
|
|
331 |
VLLM_DISABLE_COMPILE_CACHE=1 python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model pytorch/Phi-4-mini-instruct-FP8 --batch-size 1
|
332 |
```
|
333 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
</details>
|
335 |
|
336 |
# Paper: TorchAO: PyTorch-Native Training-to-Serving Model Optimization
|