Added autoencoder model main files
Browse files- __pycache__/brlp_lite.cpython-310.pyc +0 -0
- autoencoder-ep-4.pth +3 -0
- brlp_lite.py +570 -0
- discriminator-ep-4.pth +3 -0
- inputs_local.csv +0 -0
- requirements.txt +18 -0
__pycache__/brlp_lite.cpython-310.pyc
ADDED
|
Binary file (18.2 kB). View file
|
|
|
autoencoder-ep-4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d83a2a0ed04a16f4908e91c2c8aab3b20b4f9a763dd838600baba07e694c6b94
|
| 3 |
+
size 55126081
|
brlp_lite.py
ADDED
|
@@ -0,0 +1,570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Optional, Union
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import argparse
|
| 5 |
+
import numpy as np
|
| 6 |
+
import warnings
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from torch import Tensor
|
| 10 |
+
from torch.optim.optimizer import Optimizer
|
| 11 |
+
from torch.nn import L1Loss
|
| 12 |
+
from torch.utils.data import DataLoader
|
| 13 |
+
from torch.cuda.amp import autocast
|
| 14 |
+
from torch.amp import GradScaler
|
| 15 |
+
|
| 16 |
+
from generative.networks.nets import (
|
| 17 |
+
AutoencoderKL,
|
| 18 |
+
PatchDiscriminator,
|
| 19 |
+
)
|
| 20 |
+
from generative.losses import PerceptualLoss, PatchAdversarialLoss
|
| 21 |
+
from monai.data import Dataset, PersistentDataset
|
| 22 |
+
from monai.transforms.transform import Transform
|
| 23 |
+
from monai import transforms
|
| 24 |
+
from monai.utils import set_determinism
|
| 25 |
+
from monai.data.meta_tensor import MetaTensor
|
| 26 |
+
|
| 27 |
+
from tqdm import tqdm
|
| 28 |
+
import matplotlib.pyplot as plt
|
| 29 |
+
|
| 30 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 31 |
+
|
| 32 |
+
# choosen resolution
|
| 33 |
+
RESOLUTION = 1.5
|
| 34 |
+
|
| 35 |
+
# shape of the MNI152 (1mm^3) template
|
| 36 |
+
INPUT_SHAPE_1mm = (182, 218, 182)
|
| 37 |
+
|
| 38 |
+
# resampling the MNI152 to (1.5mm^3)
|
| 39 |
+
INPUT_SHAPE_1p5mm = (122, 146, 122)
|
| 40 |
+
|
| 41 |
+
# Adjusting the dimensions to be divisible by 8 (2^3 where 3 are the downsampling layers of the AE)
|
| 42 |
+
INPUT_SHAPE_AE = (120, 144, 120)
|
| 43 |
+
|
| 44 |
+
# Latent shape of the autoencoder
|
| 45 |
+
LATENT_SHAPE_AE = (3, 15, 18, 15)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def load_if(checkpoints_path: Optional[str], network: nn.Module) -> nn.Module:
|
| 49 |
+
"""
|
| 50 |
+
Load pretrained weights if available.
|
| 51 |
+
|
| 52 |
+
Args:
|
| 53 |
+
checkpoints_path (Optional[str]): path of the checkpoints
|
| 54 |
+
network (nn.Module): the neural network to initialize
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
nn.Module: the initialized neural network
|
| 58 |
+
"""
|
| 59 |
+
if checkpoints_path is not None:
|
| 60 |
+
assert os.path.exists(checkpoints_path), 'Invalid path'
|
| 61 |
+
# Using context manager to allow MetaTensor
|
| 62 |
+
with torch.serialization.safe_globals([MetaTensor]):
|
| 63 |
+
#network.load_state_dict(torch.load(checkpoints_path))
|
| 64 |
+
network.load_state_dict(torch.load(checkpoints_path, map_location='cpu'))
|
| 65 |
+
return network
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def init_autoencoder(checkpoints_path: Optional[str] = None) -> nn.Module:
|
| 69 |
+
"""
|
| 70 |
+
Load the KL autoencoder (pretrained if `checkpoints_path` points to previous params).
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
checkpoints_path (Optional[str], optional): path of the checkpoints. Defaults to None.
|
| 74 |
+
|
| 75 |
+
Returns:
|
| 76 |
+
nn.Module: the KL autoencoder
|
| 77 |
+
"""
|
| 78 |
+
autoencoder = AutoencoderKL(spatial_dims=3,
|
| 79 |
+
in_channels=1,
|
| 80 |
+
out_channels=1,
|
| 81 |
+
latent_channels=3,
|
| 82 |
+
num_channels=(64, 128, 128, 128),
|
| 83 |
+
num_res_blocks=2,
|
| 84 |
+
norm_num_groups=32,
|
| 85 |
+
norm_eps=1e-06,
|
| 86 |
+
attention_levels=(False, False, False, False),
|
| 87 |
+
with_decoder_nonlocal_attn=False,
|
| 88 |
+
with_encoder_nonlocal_attn=False)
|
| 89 |
+
return load_if(checkpoints_path, autoencoder)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def init_patch_discriminator(checkpoints_path: Optional[str] = None) -> nn.Module:
|
| 93 |
+
"""
|
| 94 |
+
Load the patch discriminator (pretrained if `checkpoints_path` points to previous params).
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
checkpoints_path (Optional[str], optional): path of the checkpoints. Defaults to None.
|
| 98 |
+
|
| 99 |
+
Returns:
|
| 100 |
+
nn.Module: the parch discriminator
|
| 101 |
+
"""
|
| 102 |
+
patch_discriminator = PatchDiscriminator(spatial_dims=3,
|
| 103 |
+
num_layers_d=3,
|
| 104 |
+
num_channels=32,
|
| 105 |
+
in_channels=1,
|
| 106 |
+
out_channels=1)
|
| 107 |
+
return load_if(checkpoints_path, patch_discriminator)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class KLDivergenceLoss:
|
| 111 |
+
"""
|
| 112 |
+
A class for computing the Kullback-Leibler divergence loss.
|
| 113 |
+
"""
|
| 114 |
+
|
| 115 |
+
def __call__(self, z_mu: Tensor, z_sigma: Tensor) -> Tensor:
|
| 116 |
+
"""
|
| 117 |
+
Computes the KL divergence loss for the given parameters.
|
| 118 |
+
|
| 119 |
+
Args:
|
| 120 |
+
z_mu (Tensor): The mean of the distribution.
|
| 121 |
+
z_sigma (Tensor): The standard deviation of the distribution.
|
| 122 |
+
|
| 123 |
+
Returns:
|
| 124 |
+
Tensor: The computed KL divergence loss, averaged over the batch size.
|
| 125 |
+
"""
|
| 126 |
+
|
| 127 |
+
kl_loss = 0.5 * torch.sum(z_mu.pow(2) + z_sigma.pow(2) - torch.log(z_sigma.pow(2)) - 1, dim=[1, 2, 3, 4])
|
| 128 |
+
return torch.sum(kl_loss) / kl_loss.shape[0]
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
class GradientAccumulation:
|
| 132 |
+
"""
|
| 133 |
+
Implements gradient accumulation to facilitate training with larger
|
| 134 |
+
effective batch sizes than what can be physically accommodated in memory.
|
| 135 |
+
"""
|
| 136 |
+
|
| 137 |
+
def __init__(self,
|
| 138 |
+
actual_batch_size: int,
|
| 139 |
+
expect_batch_size: int,
|
| 140 |
+
loader_len: int,
|
| 141 |
+
optimizer: Optimizer,
|
| 142 |
+
grad_scaler: Optional[GradScaler] = None) -> None:
|
| 143 |
+
"""
|
| 144 |
+
Initializes the GradientAccumulation instance with the necessary parameters for
|
| 145 |
+
managing gradient accumulation.
|
| 146 |
+
|
| 147 |
+
Args:
|
| 148 |
+
actual_batch_size (int): The size of the mini-batches actually used in training.
|
| 149 |
+
expect_batch_size (int): The desired (effective) batch size to simulate through gradient accumulation.
|
| 150 |
+
loader_len (int): The length of the data loader, representing the total number of mini-batches.
|
| 151 |
+
optimizer (Optimizer): The optimizer used for performing optimization steps.
|
| 152 |
+
grad_scaler (Optional[GradScaler], optional): A GradScaler for mixed precision training. Defaults to None.
|
| 153 |
+
|
| 154 |
+
Raises:
|
| 155 |
+
AssertionError: If `expect_batch_size` is not divisible by `actual_batch_size`.
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
assert expect_batch_size % actual_batch_size == 0, \
|
| 159 |
+
'expect_batch_size must be divisible by actual_batch_size'
|
| 160 |
+
self.actual_batch_size = actual_batch_size
|
| 161 |
+
self.expect_batch_size = expect_batch_size
|
| 162 |
+
self.loader_len = loader_len
|
| 163 |
+
self.optimizer = optimizer
|
| 164 |
+
self.grad_scaler = grad_scaler
|
| 165 |
+
|
| 166 |
+
# if the expected batch size is N=KM, and the actual batch size
|
| 167 |
+
# is M, then we need to accumulate gradient from N / M = K optimization steps.
|
| 168 |
+
self.steps_until_update = expect_batch_size / actual_batch_size
|
| 169 |
+
|
| 170 |
+
def step(self, loss: Tensor, step: int) -> None:
|
| 171 |
+
"""
|
| 172 |
+
Performs a backward pass for the given loss and potentially executes an optimization
|
| 173 |
+
step if the conditions for gradient accumulation are met. The optimization step is taken
|
| 174 |
+
only after a specified number of steps (defined by the expected batch size) or at the end
|
| 175 |
+
of the dataset.
|
| 176 |
+
|
| 177 |
+
Args:
|
| 178 |
+
loss (Tensor): The loss value for the current forward pass.
|
| 179 |
+
step (int): The current step (mini-batch index) within the epoch.
|
| 180 |
+
"""
|
| 181 |
+
loss = loss / self.expect_batch_size
|
| 182 |
+
|
| 183 |
+
if self.grad_scaler is not None:
|
| 184 |
+
self.grad_scaler.scale(loss).backward()
|
| 185 |
+
else:
|
| 186 |
+
loss.backward()
|
| 187 |
+
if (step + 1) % self.steps_until_update == 0 or (step + 1) == self.loader_len:
|
| 188 |
+
if self.grad_scaler is not None:
|
| 189 |
+
self.grad_scaler.step(self.optimizer)
|
| 190 |
+
self.grad_scaler.update()
|
| 191 |
+
else:
|
| 192 |
+
self.optimizer.step()
|
| 193 |
+
self.optimizer.zero_grad(set_to_none=True)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
class AverageLoss:
|
| 197 |
+
"""
|
| 198 |
+
Utility class to track losses
|
| 199 |
+
and metrics during training.
|
| 200 |
+
"""
|
| 201 |
+
|
| 202 |
+
def __init__(self):
|
| 203 |
+
self.losses_accumulator = {}
|
| 204 |
+
|
| 205 |
+
def put(self, loss_key:str, loss_value:Union[int,float]) -> None:
|
| 206 |
+
"""
|
| 207 |
+
Store value
|
| 208 |
+
|
| 209 |
+
Args:
|
| 210 |
+
loss_key (str): Metric name
|
| 211 |
+
loss_value (int | float): Metric value to store
|
| 212 |
+
"""
|
| 213 |
+
if loss_key not in self.losses_accumulator:
|
| 214 |
+
self.losses_accumulator[loss_key] = []
|
| 215 |
+
self.losses_accumulator[loss_key].append(loss_value)
|
| 216 |
+
|
| 217 |
+
def pop_avg(self, loss_key:str) -> float:
|
| 218 |
+
"""
|
| 219 |
+
Average the stored values of a given metric
|
| 220 |
+
|
| 221 |
+
Args:
|
| 222 |
+
loss_key (str): Metric name
|
| 223 |
+
|
| 224 |
+
Returns:
|
| 225 |
+
float: average of the stored values
|
| 226 |
+
"""
|
| 227 |
+
if loss_key not in self.losses_accumulator:
|
| 228 |
+
return None
|
| 229 |
+
losses = self.losses_accumulator[loss_key]
|
| 230 |
+
self.losses_accumulator[loss_key] = []
|
| 231 |
+
return sum(losses) / len(losses)
|
| 232 |
+
|
| 233 |
+
def to_tensorboard(self, writer: SummaryWriter, step: int):
|
| 234 |
+
"""
|
| 235 |
+
Logs the average value of all the metrics stored
|
| 236 |
+
into Tensorboard.
|
| 237 |
+
|
| 238 |
+
Args:
|
| 239 |
+
writer (SummaryWriter): Tensorboard writer
|
| 240 |
+
step (int): Tensorboard logging global step
|
| 241 |
+
"""
|
| 242 |
+
for metric_key in self.losses_accumulator.keys():
|
| 243 |
+
writer.add_scalar(metric_key, self.pop_avg(metric_key), step)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def get_dataset_from_pd(df: pd.DataFrame, transforms_fn: Transform, cache_dir: Optional[str]) -> Union[Dataset,PersistentDataset]:
|
| 247 |
+
"""
|
| 248 |
+
If `cache_dir` is defined, returns a `monai.data.PersistenDataset`.
|
| 249 |
+
Otherwise, returns a simple `monai.data.Dataset`.
|
| 250 |
+
|
| 251 |
+
Args:
|
| 252 |
+
df (pd.DataFrame): Dataframe describing each image in the longitudinal dataset.
|
| 253 |
+
transforms_fn (Transform): Set of transformations
|
| 254 |
+
cache_dir (Optional[str]): Cache directory (ensure enough storage is available)
|
| 255 |
+
|
| 256 |
+
Returns:
|
| 257 |
+
Dataset|PersistentDataset: The dataset
|
| 258 |
+
"""
|
| 259 |
+
assert cache_dir is None or os.path.exists(cache_dir), 'Invalid cache directory path'
|
| 260 |
+
data = df.to_dict(orient='records')
|
| 261 |
+
return Dataset(data=data, transform=transforms_fn) if cache_dir is None \
|
| 262 |
+
else PersistentDataset(data=data, transform=transforms_fn, cache_dir=cache_dir)
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def tb_display_reconstruction(writer, step, image, recon):
|
| 266 |
+
"""
|
| 267 |
+
Display reconstruction in TensorBoard during AE training.
|
| 268 |
+
"""
|
| 269 |
+
plt.style.use('dark_background')
|
| 270 |
+
_, ax = plt.subplots(ncols=3, nrows=2, figsize=(7, 5))
|
| 271 |
+
for _ax in ax.flatten(): _ax.set_axis_off()
|
| 272 |
+
|
| 273 |
+
if len(image.shape) == 4: image = image.squeeze(0)
|
| 274 |
+
if len(recon.shape) == 4: recon = recon.squeeze(0)
|
| 275 |
+
|
| 276 |
+
ax[0, 0].set_title('original image', color='cyan')
|
| 277 |
+
ax[0, 0].imshow(image[image.shape[0] // 2, :, :], cmap='gray')
|
| 278 |
+
ax[0, 1].imshow(image[:, image.shape[1] // 2, :], cmap='gray')
|
| 279 |
+
ax[0, 2].imshow(image[:, :, image.shape[2] // 2], cmap='gray')
|
| 280 |
+
|
| 281 |
+
ax[1, 0].set_title('reconstructed image', color='magenta')
|
| 282 |
+
ax[1, 0].imshow(recon[recon.shape[0] // 2, :, :], cmap='gray')
|
| 283 |
+
ax[1, 1].imshow(recon[:, recon.shape[1] // 2, :], cmap='gray')
|
| 284 |
+
ax[1, 2].imshow(recon[:, :, recon.shape[2] // 2], cmap='gray')
|
| 285 |
+
|
| 286 |
+
plt.tight_layout()
|
| 287 |
+
writer.add_figure('Reconstruction', plt.gcf(), global_step=step)
|
| 288 |
+
|
| 289 |
+
|
| 290 |
+
def set_environment(seed: int = 0) -> None:
|
| 291 |
+
"""
|
| 292 |
+
Set deterministic behavior for reproducibility.
|
| 293 |
+
|
| 294 |
+
Args:
|
| 295 |
+
seed (int, optional): Seed value. Defaults to 0.
|
| 296 |
+
"""
|
| 297 |
+
set_determinism(seed)
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
def train(
|
| 301 |
+
dataset_csv: str,
|
| 302 |
+
cache_dir: str,
|
| 303 |
+
output_dir: str,
|
| 304 |
+
aekl_ckpt: Optional[str] = None,
|
| 305 |
+
disc_ckpt: Optional[str] = None,
|
| 306 |
+
num_workers: int = 8,
|
| 307 |
+
n_epochs: int = 5,
|
| 308 |
+
max_batch_size: int = 2,
|
| 309 |
+
batch_size: int = 16,
|
| 310 |
+
lr: float = 1e-4,
|
| 311 |
+
aug_p: float = 0.8,
|
| 312 |
+
device: str = ('cuda' if torch.cuda.is_available() else
|
| 313 |
+
'cpu'),
|
| 314 |
+
) -> None:
|
| 315 |
+
"""
|
| 316 |
+
Train the autoencoder and discriminator models.
|
| 317 |
+
|
| 318 |
+
Args:
|
| 319 |
+
dataset_csv (str): Path to the dataset CSV file.
|
| 320 |
+
cache_dir (str): Directory for caching data.
|
| 321 |
+
output_dir (str): Directory to save model checkpoints.
|
| 322 |
+
aekl_ckpt (Optional[str], optional): Path to the autoencoder checkpoint. Defaults to None.
|
| 323 |
+
disc_ckpt (Optional[str], optional): Path to the discriminator checkpoint. Defaults to None.
|
| 324 |
+
num_workers (int, optional): Number of data loader workers. Defaults to 8.
|
| 325 |
+
n_epochs (int, optional): Number of training epochs. Defaults to 5.
|
| 326 |
+
max_batch_size (int, optional): Actual batch size per iteration. Defaults to 2.
|
| 327 |
+
batch_size (int, optional): Expected (effective) batch size. Defaults to 16.
|
| 328 |
+
lr (float, optional): Learning rate. Defaults to 1e-4.
|
| 329 |
+
aug_p (float, optional): Augmentation probability. Defaults to 0.8.
|
| 330 |
+
device (str, optional): Device to run the training on. Defaults to 'cuda' if available.
|
| 331 |
+
"""
|
| 332 |
+
set_environment(0)
|
| 333 |
+
|
| 334 |
+
transforms_fn = transforms.Compose([
|
| 335 |
+
transforms.CopyItemsD(keys={'image_path'}, names=['image']),
|
| 336 |
+
transforms.LoadImageD(image_only=True, keys=['image']),
|
| 337 |
+
transforms.EnsureChannelFirstD(keys=['image']),
|
| 338 |
+
transforms.SpacingD(pixdim=2, keys=['image']),
|
| 339 |
+
transforms.ResizeWithPadOrCropD(spatial_size=(80, 96, 80), mode='minimum', keys=['image']),
|
| 340 |
+
transforms.ScaleIntensityD(minv=0, maxv=1, keys=['image'])
|
| 341 |
+
])
|
| 342 |
+
|
| 343 |
+
dataset_df = pd.read_csv(dataset_csv)
|
| 344 |
+
train_df = dataset_df[dataset_df.split == 'train']
|
| 345 |
+
trainset = get_dataset_from_pd(train_df, transforms_fn, cache_dir)
|
| 346 |
+
|
| 347 |
+
train_loader = DataLoader(
|
| 348 |
+
dataset=trainset,
|
| 349 |
+
num_workers=num_workers,
|
| 350 |
+
batch_size=max_batch_size,
|
| 351 |
+
shuffle=True,
|
| 352 |
+
persistent_workers=True,
|
| 353 |
+
pin_memory=True
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
print('Device is %s' %(device))
|
| 357 |
+
autoencoder = init_autoencoder(aekl_ckpt).to(device)
|
| 358 |
+
discriminator = init_patch_discriminator(disc_ckpt).to(device)
|
| 359 |
+
|
| 360 |
+
# Loss Weights
|
| 361 |
+
adv_weight = 0.025
|
| 362 |
+
perceptual_weight = 0.001
|
| 363 |
+
kl_weight = 1e-7
|
| 364 |
+
|
| 365 |
+
# Loss Functions
|
| 366 |
+
l1_loss_fn = L1Loss()
|
| 367 |
+
kl_loss_fn = KLDivergenceLoss()
|
| 368 |
+
adv_loss_fn = PatchAdversarialLoss(criterion="least_squares")
|
| 369 |
+
|
| 370 |
+
with warnings.catch_warnings():
|
| 371 |
+
warnings.simplefilter("ignore")
|
| 372 |
+
perc_loss_fn = PerceptualLoss(
|
| 373 |
+
spatial_dims=3,
|
| 374 |
+
network_type="squeeze",
|
| 375 |
+
is_fake_3d=True,
|
| 376 |
+
fake_3d_ratio=0.2
|
| 377 |
+
).to(device)
|
| 378 |
+
|
| 379 |
+
# Optimizers
|
| 380 |
+
optimizer_g = torch.optim.Adam(autoencoder.parameters(), lr=lr)
|
| 381 |
+
optimizer_d = torch.optim.Adam(discriminator.parameters(), lr=lr)
|
| 382 |
+
|
| 383 |
+
# Gradient Accumulation
|
| 384 |
+
gradacc_g = GradientAccumulation(
|
| 385 |
+
actual_batch_size=max_batch_size,
|
| 386 |
+
expect_batch_size=batch_size,
|
| 387 |
+
loader_len=len(train_loader),
|
| 388 |
+
optimizer=optimizer_g,
|
| 389 |
+
grad_scaler=GradScaler()
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
gradacc_d = GradientAccumulation(
|
| 393 |
+
actual_batch_size=max_batch_size,
|
| 394 |
+
expect_batch_size=batch_size,
|
| 395 |
+
loader_len=len(train_loader),
|
| 396 |
+
optimizer=optimizer_d,
|
| 397 |
+
grad_scaler=GradScaler()
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
# Logging
|
| 401 |
+
avgloss = AverageLoss()
|
| 402 |
+
writer = SummaryWriter()
|
| 403 |
+
total_counter = 0
|
| 404 |
+
|
| 405 |
+
for epoch in range(n_epochs):
|
| 406 |
+
autoencoder.train()
|
| 407 |
+
progress_bar = tqdm(enumerate(train_loader), total=len(train_loader))
|
| 408 |
+
progress_bar.set_description(f'Epoch {epoch + 1}/{n_epochs}')
|
| 409 |
+
|
| 410 |
+
for step, batch in progress_bar:
|
| 411 |
+
# Generator Training
|
| 412 |
+
with autocast(enabled=True):
|
| 413 |
+
images = batch["image"].to(device)
|
| 414 |
+
reconstruction, z_mu, z_sigma = autoencoder(images)
|
| 415 |
+
|
| 416 |
+
logits_fake = discriminator(reconstruction.contiguous().float())[-1]
|
| 417 |
+
|
| 418 |
+
rec_loss = l1_loss_fn(reconstruction.float(), images.float())
|
| 419 |
+
kl_loss = kl_weight * kl_loss_fn(z_mu, z_sigma)
|
| 420 |
+
per_loss = perceptual_weight * perc_loss_fn(reconstruction.float(), images.float())
|
| 421 |
+
gen_loss = adv_weight * adv_loss_fn(logits_fake, target_is_real=True, for_discriminator=False)
|
| 422 |
+
|
| 423 |
+
loss_g = rec_loss + kl_loss + per_loss + gen_loss
|
| 424 |
+
|
| 425 |
+
gradacc_g.step(loss_g, step)
|
| 426 |
+
|
| 427 |
+
# Discriminator Training
|
| 428 |
+
with autocast(enabled=True):
|
| 429 |
+
logits_fake = discriminator(reconstruction.contiguous().detach())[-1]
|
| 430 |
+
d_loss_fake = adv_loss_fn(logits_fake, target_is_real=False, for_discriminator=True)
|
| 431 |
+
logits_real = discriminator(images.contiguous().detach())[-1]
|
| 432 |
+
d_loss_real = adv_loss_fn(logits_real, target_is_real=True, for_discriminator=True)
|
| 433 |
+
discriminator_loss = (d_loss_fake + d_loss_real) * 0.5
|
| 434 |
+
loss_d = adv_weight * discriminator_loss
|
| 435 |
+
|
| 436 |
+
gradacc_d.step(loss_d, step)
|
| 437 |
+
|
| 438 |
+
# Logging
|
| 439 |
+
avgloss.put('Generator/reconstruction_loss', rec_loss.item())
|
| 440 |
+
avgloss.put('Generator/perceptual_loss', per_loss.item())
|
| 441 |
+
avgloss.put('Generator/adversarial_loss', gen_loss.item())
|
| 442 |
+
avgloss.put('Generator/kl_regularization', kl_loss.item())
|
| 443 |
+
avgloss.put('Discriminator/adversarial_loss', loss_d.item())
|
| 444 |
+
|
| 445 |
+
if total_counter % 10 == 0:
|
| 446 |
+
step_log = total_counter // 10
|
| 447 |
+
avgloss.to_tensorboard(writer, step_log)
|
| 448 |
+
tb_display_reconstruction(
|
| 449 |
+
writer,
|
| 450 |
+
step_log,
|
| 451 |
+
images[0].detach().cpu(),
|
| 452 |
+
reconstruction[0].detach().cpu()
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
total_counter += 1
|
| 456 |
+
|
| 457 |
+
# Save the model after each epoch.
|
| 458 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 459 |
+
torch.save(discriminator.state_dict(), os.path.join(output_dir, f'discriminator-ep-{epoch + 1}.pth'))
|
| 460 |
+
torch.save(autoencoder.state_dict(), os.path.join(output_dir, f'autoencoder-ep-{epoch + 1}.pth'))
|
| 461 |
+
|
| 462 |
+
writer.close()
|
| 463 |
+
print("Training completed and models saved.")
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
def inference(
|
| 467 |
+
dataset_csv: str,
|
| 468 |
+
aekl_ckpt: str,
|
| 469 |
+
output_dir: str,
|
| 470 |
+
device: str = ('cuda' if torch.cuda.is_available() else
|
| 471 |
+
'cpu'),
|
| 472 |
+
) -> None:
|
| 473 |
+
"""
|
| 474 |
+
Perform inference to encode images into latent space.
|
| 475 |
+
|
| 476 |
+
Args:
|
| 477 |
+
dataset_csv (str): Path to the dataset CSV file.
|
| 478 |
+
aekl_ckpt (str): Path to the autoencoder checkpoint.
|
| 479 |
+
output_dir (str): Directory to save latent representations.
|
| 480 |
+
device (str, optional): Device to run the inference on. Defaults to 'cuda' if available.
|
| 481 |
+
"""
|
| 482 |
+
DEVICE = device
|
| 483 |
+
|
| 484 |
+
autoencoder = init_autoencoder(aekl_ckpt).to(DEVICE).eval()
|
| 485 |
+
|
| 486 |
+
transforms_fn = transforms.Compose([
|
| 487 |
+
transforms.CopyItemsD(keys={'image_path'}, names=['image']),
|
| 488 |
+
transforms.LoadImageD(image_only=True, keys=['image']),
|
| 489 |
+
transforms.EnsureChannelFirstD(keys=['image']),
|
| 490 |
+
transforms.SpacingD(pixdim=RESOLUTION, keys=['image']),
|
| 491 |
+
transforms.ResizeWithPadOrCropD(spatial_size=INPUT_SHAPE_AE, mode='minimum', keys=['image']),
|
| 492 |
+
transforms.ScaleIntensityD(minv=0, maxv=1, keys=['image'])
|
| 493 |
+
])
|
| 494 |
+
|
| 495 |
+
df = pd.read_csv(dataset_csv)
|
| 496 |
+
|
| 497 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 498 |
+
|
| 499 |
+
with torch.no_grad():
|
| 500 |
+
for image_path in tqdm(df.image_path, total=len(df)):
|
| 501 |
+
destpath = os.path.join(
|
| 502 |
+
output_dir,
|
| 503 |
+
os.path.basename(image_path).replace('.nii.gz', '_latent.npz').replace('.nii', '_latent.npz')
|
| 504 |
+
)
|
| 505 |
+
if os.path.exists(destpath):
|
| 506 |
+
continue
|
| 507 |
+
mri_tensor = transforms_fn({'image_path': image_path})['image'].to(DEVICE)
|
| 508 |
+
mri_latent, _ = autoencoder.encode(mri_tensor.unsqueeze(0))
|
| 509 |
+
mri_latent = mri_latent.cpu().squeeze(0).numpy()
|
| 510 |
+
np.savez_compressed(destpath, data=mri_latent)
|
| 511 |
+
|
| 512 |
+
print("Inference completed and latent representations saved.")
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
def main():
|
| 516 |
+
"""
|
| 517 |
+
Main function to parse command-line arguments and execute training or inference.
|
| 518 |
+
"""
|
| 519 |
+
parser = argparse.ArgumentParser(description="BRLP Lite Training and Inference Script")
|
| 520 |
+
|
| 521 |
+
subparsers = parser.add_subparsers(dest='command', required=True, help='Sub-commands: train or infer')
|
| 522 |
+
|
| 523 |
+
# Training Subparser
|
| 524 |
+
train_parser = subparsers.add_parser('train', help='Train the models.')
|
| 525 |
+
train_parser.add_argument('--dataset_csv', type=str, required=True, help='Path to the dataset CSV file.')
|
| 526 |
+
train_parser.add_argument('--cache_dir', type=str, required=True, help='Directory for caching data.')
|
| 527 |
+
train_parser.add_argument('--output_dir', type=str, required=True, help='Directory to save model checkpoints.')
|
| 528 |
+
train_parser.add_argument('--aekl_ckpt', type=str, default=None, help='Path to the autoencoder checkpoint.')
|
| 529 |
+
train_parser.add_argument('--disc_ckpt', type=str, default=None, help='Path to the discriminator checkpoint.')
|
| 530 |
+
train_parser.add_argument('--num_workers', type=int, default=8, help='Number of data loader workers.')
|
| 531 |
+
train_parser.add_argument('--n_epochs', type=int, default=5, help='Number of training epochs.')
|
| 532 |
+
train_parser.add_argument('--max_batch_size', type=int, default=2, help='Actual batch size per iteration.')
|
| 533 |
+
train_parser.add_argument('--batch_size', type=int, default=16, help='Expected (effective) batch size.')
|
| 534 |
+
train_parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate.')
|
| 535 |
+
train_parser.add_argument('--aug_p', type=float, default=0.8, help='Augmentation probability.')
|
| 536 |
+
|
| 537 |
+
# Inference Subparser
|
| 538 |
+
infer_parser = subparsers.add_parser('infererence', help='Run inference to encode images.')
|
| 539 |
+
infer_parser.add_argument('--dataset_csv', type=str, required=True, help='Path to the dataset CSV file.')
|
| 540 |
+
infer_parser.add_argument('--aekl_ckpt', type=str, required=True, help='Path to the autoencoder checkpoint.')
|
| 541 |
+
infer_parser.add_argument('--output_dir', type=str, required=True, help='Directory to save latent representations.')
|
| 542 |
+
|
| 543 |
+
args = parser.parse_args()
|
| 544 |
+
|
| 545 |
+
if args.command == 'train':
|
| 546 |
+
train(
|
| 547 |
+
dataset_csv=args.dataset_csv,
|
| 548 |
+
cache_dir=args.cache_dir,
|
| 549 |
+
output_dir=args.output_dir,
|
| 550 |
+
aekl_ckpt=args.aekl_ckpt,
|
| 551 |
+
disc_ckpt=args.disc_ckpt,
|
| 552 |
+
num_workers=args.num_workers,
|
| 553 |
+
n_epochs=args.n_epochs,
|
| 554 |
+
max_batch_size=args.max_batch_size,
|
| 555 |
+
batch_size=args.batch_size,
|
| 556 |
+
lr=args.lr,
|
| 557 |
+
aug_p=args.aug_p,
|
| 558 |
+
)
|
| 559 |
+
elif args.command == 'infer':
|
| 560 |
+
inference(
|
| 561 |
+
dataset_csv=args.dataset_csv,
|
| 562 |
+
aekl_ckpt=args.aekl_ckpt,
|
| 563 |
+
output_dir=args.output_dir,
|
| 564 |
+
)
|
| 565 |
+
else:
|
| 566 |
+
parser.print_help()
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
if __name__ == '__main__':
|
| 570 |
+
main()
|
discriminator-ep-4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:83d59c14472ce1cc582798762f7980361e0239e9f524b6b8b6861dab43fd664e
|
| 3 |
+
size 11098603
|
inputs_local.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# requirements.txt
|
| 2 |
+
|
| 3 |
+
# PyTorch (CUDA or CPU version). For GPU install, see PyTorch docs for the correct wheel.
|
| 4 |
+
torch>=1.12
|
| 5 |
+
|
| 6 |
+
# MONAI v1.2+ has the 'generative' subpackage with AutoencoderKL, PatchDiscriminator, etc.
|
| 7 |
+
monai>=1.2.0
|
| 8 |
+
monai-generative
|
| 9 |
+
|
| 10 |
+
# For perceptual losses in MONAI's generative module.
|
| 11 |
+
lpips
|
| 12 |
+
|
| 13 |
+
# Common Python libraries
|
| 14 |
+
pandas
|
| 15 |
+
numpy
|
| 16 |
+
tqdm
|
| 17 |
+
tensorboard
|
| 18 |
+
matplotlib
|