--- license: apache-2.0 language: - en metrics: - accuracy - f1 - precision - recall base_model: FacebookAI/roberta-base pipeline_tag: text-classification library_name: transformers tags: - roberta - sentiment-analysis - transformers - text-classification - custom-dataset eval_results: eval_accuracy: 0.91 eval_f1: 0.90 eval_precision: 0.92 eval_recall: 0.89 --- # 🚀 Sentiment-RoBERTa-Base A fine-tuned [RoBERTa-base](https://huggingface.co/roberta-base) model for **binary sentiment classification** (positive/negative). Trained on a custom dataset across multiple sources including tweets, social comments, and headlines to handle **real-world tone detection**. ✅ Use this model to build sentiment-aware applications, feedback classifiers, social media monitoring tools, or LLM content filters. ## 🧠 Model Details | Property | Value | |-----------------------|---------------------------| | Base Model | `roberta-base` | | Fine-tuned Tasks | Binary Sentiment Analysis | | Classes | `0 = Negative`, `1 = Positive` | | Language | English (`en`) | | Dataset | Custom multi-source | | Framework | 🤗 Transformers | | Model Size | ~125M parameters | ## 📊 Evaluation (on 20% held-out test set) | Metric | Score | |--------------|-------| | Accuracy | 91% | | F1 Score | 90% | | Precision | 92% | | Recall | 89% | ## ⚙️ Quick Start ### 💡 Install Required Libraries ```bash pip install transformers torch