Upload MedLLM-10M medical language model
Browse files- README.md +169 -3
- config.json +33 -0
- demo.py +28 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +53 -0
- training_config.yaml +39 -0
README.md
CHANGED
@@ -1,3 +1,169 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language: en
|
4 |
+
tags:
|
5 |
+
- medical
|
6 |
+
- healthcare
|
7 |
+
- gpt
|
8 |
+
- text-generation
|
9 |
+
- clinical
|
10 |
+
- biology
|
11 |
+
- medicine
|
12 |
+
datasets:
|
13 |
+
- medical-literature
|
14 |
+
- pubmed
|
15 |
+
widget:
|
16 |
+
- text: "Symptoms of diabetes include"
|
17 |
+
example_title: "Medical Symptoms"
|
18 |
+
- text: "Treatment for hypertension involves"
|
19 |
+
example_title: "Medical Treatment"
|
20 |
+
- text: "The patient presents with chest pain and"
|
21 |
+
example_title: "Clinical Note"
|
22 |
+
- text: "Question: What is high blood pressure? Answer:"
|
23 |
+
example_title: "Medical Q&A"
|
24 |
+
pipeline_tag: text-generation
|
25 |
+
---
|
26 |
+
|
27 |
+
# MedLLM-10M: Medical Language Model
|
28 |
+
|
29 |
+
## Model Description
|
30 |
+
|
31 |
+
MedLLM-10M is a lightweight GPT-style language model specifically trained on medical literature and clinical text. This model is designed for educational and research purposes in the medical domain.
|
32 |
+
|
33 |
+
⚠️ **Important Disclaimer**: This model is for research and educational purposes only. It should never be used for actual medical diagnosis, treatment recommendations, or clinical decision-making without proper medical supervision.
|
34 |
+
|
35 |
+
## Model Details
|
36 |
+
|
37 |
+
- **Model Type**: Causal Language Model (GPT-style)
|
38 |
+
- **Parameters**: ~27.7M
|
39 |
+
- **Architecture**: Transformer decoder
|
40 |
+
- **Training Data**: Medical literature, PubMed abstracts, clinical guidelines
|
41 |
+
- **Vocabulary Size**: 5,000
|
42 |
+
- **Context Length**: 512 tokens
|
43 |
+
- **License**: Apache 2.0
|
44 |
+
|
45 |
+
## Architecture
|
46 |
+
|
47 |
+
```
|
48 |
+
Layers: 8
|
49 |
+
Hidden Size: 512
|
50 |
+
Attention Heads: 8
|
51 |
+
Feed Forward Size: 2048
|
52 |
+
Dropout: 0.1
|
53 |
+
Activation: gelu
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training Details
|
57 |
+
|
58 |
+
The model was trained on a curated dataset of medical literature including:
|
59 |
+
- PubMed abstracts and research papers
|
60 |
+
- Medical journal articles
|
61 |
+
- Clinical practice guidelines
|
62 |
+
- Medical Q&A datasets
|
63 |
+
- Healthcare websites (Mayo Clinic, WebMD, etc.)
|
64 |
+
|
65 |
+
### Training Hyperparameters
|
66 |
+
|
67 |
+
- **Epochs**: 10
|
68 |
+
- **Batch Size**: 4
|
69 |
+
- **Learning Rate**: 0.0003
|
70 |
+
- **Optimizer**: AdamW
|
71 |
+
- **Weight Decay**: 0.01
|
72 |
+
- **Mixed Precision**: FP16 (if available)
|
73 |
+
|
74 |
+
### Hardware
|
75 |
+
|
76 |
+
- **Training Hardware**: NVIDIA RTX 3060 (12GB VRAM)
|
77 |
+
- **Framework**: PyTorch + Transformers
|
78 |
+
|
79 |
+
## Usage
|
80 |
+
|
81 |
+
```python
|
82 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
83 |
+
|
84 |
+
# Load model and tokenizer
|
85 |
+
tokenizer = AutoTokenizer.from_pretrained("raihan-js/medllm-10m")
|
86 |
+
model = AutoModelForCausalLM.from_pretrained("raihan-js/medllm-10m")
|
87 |
+
|
88 |
+
# Generate medical text
|
89 |
+
prompt = "Symptoms of diabetes include"
|
90 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
91 |
+
outputs = model.generate(
|
92 |
+
**inputs,
|
93 |
+
max_length=100,
|
94 |
+
do_sample=True,
|
95 |
+
temperature=0.7,
|
96 |
+
pad_token_id=tokenizer.eos_token_id
|
97 |
+
)
|
98 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
99 |
+
print(response)
|
100 |
+
```
|
101 |
+
|
102 |
+
## Model Performance
|
103 |
+
|
104 |
+
This is an early-stage model trained on limited data. Current capabilities include:
|
105 |
+
- Basic medical terminology understanding
|
106 |
+
- Simple text completion in medical contexts
|
107 |
+
- Educational content generation
|
108 |
+
|
109 |
+
**Known Limitations**:
|
110 |
+
- May generate incoherent or medically inaccurate text
|
111 |
+
- Requires significant additional training for production use
|
112 |
+
- Should not be used for medical advice or diagnosis
|
113 |
+
|
114 |
+
## Intended Use Cases
|
115 |
+
|
116 |
+
### ✅ Appropriate Uses
|
117 |
+
- Educational demonstrations of medical language models
|
118 |
+
- Research into medical NLP applications
|
119 |
+
- Text completion for medical writing assistance (with human review)
|
120 |
+
- Learning and experimentation with transformer models
|
121 |
+
|
122 |
+
### ❌ Inappropriate Uses
|
123 |
+
- **Medical diagnosis or treatment recommendations**
|
124 |
+
- **Clinical decision-making**
|
125 |
+
- **Patient care without human oversight**
|
126 |
+
- **Emergency medical situations**
|
127 |
+
- **Replacement for professional medical advice**
|
128 |
+
|
129 |
+
## Ethical Considerations
|
130 |
+
|
131 |
+
### Medical Disclaimer
|
132 |
+
⚠️ **CRITICAL WARNING**: This model is NOT intended for medical use. Always consult qualified healthcare professionals for medical advice, diagnosis, or treatment.
|
133 |
+
|
134 |
+
### Limitations and Biases
|
135 |
+
- Training data may contain biases present in medical literature
|
136 |
+
- Model may reflect historical or cultural biases in healthcare
|
137 |
+
- Performance varies significantly across different medical specialties
|
138 |
+
- May generate plausible but medically incorrect information
|
139 |
+
|
140 |
+
## Development Status
|
141 |
+
|
142 |
+
This is an **experimental model** in early development. Future improvements planned:
|
143 |
+
- Expanded training dataset
|
144 |
+
- Longer training duration
|
145 |
+
- Better medical accuracy evaluation
|
146 |
+
- Safety filtering and alignment
|
147 |
+
- Domain-specific fine-tuning
|
148 |
+
|
149 |
+
## Citation
|
150 |
+
|
151 |
+
```bibtex
|
152 |
+
@misc{medllm2024,
|
153 |
+
title={MedLLM: A Lightweight Medical Language Model},
|
154 |
+
author={Raihan},
|
155 |
+
year={2024},
|
156 |
+
publisher={HuggingFace},
|
157 |
+
url={https://huggingface.co/raihan-js/medllm-10m}
|
158 |
+
}
|
159 |
+
```
|
160 |
+
|
161 |
+
## Contact
|
162 |
+
|
163 |
+
For questions about this model, please open an issue in the model repository.
|
164 |
+
|
165 |
+
---
|
166 |
+
|
167 |
+
**Last Updated**: December 2024
|
168 |
+
**Model Version**: 1.0-alpha
|
169 |
+
**Status**: Experimental - Not for production use
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_function": "gelu",
|
3 |
+
"architectures": [
|
4 |
+
"GPT2LMHeadModel"
|
5 |
+
],
|
6 |
+
"attn_pdrop": 0.1,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"embd_pdrop": 0.1,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"layer_norm_epsilon": 1e-05,
|
12 |
+
"model_type": "gpt2",
|
13 |
+
"n_embd": 512,
|
14 |
+
"n_head": 8,
|
15 |
+
"n_inner": 2048,
|
16 |
+
"n_layer": 8,
|
17 |
+
"n_positions": 512,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"reorder_and_upcast_attn": false,
|
20 |
+
"resid_pdrop": 0.1,
|
21 |
+
"scale_attn_by_inverse_layer_idx": false,
|
22 |
+
"scale_attn_weights": true,
|
23 |
+
"summary_activation": null,
|
24 |
+
"summary_first_dropout": 0.1,
|
25 |
+
"summary_proj_to_labels": true,
|
26 |
+
"summary_type": "cls_index",
|
27 |
+
"summary_use_proj": true,
|
28 |
+
"torch_dtype": "float32",
|
29 |
+
"transformers_version": "4.55.0",
|
30 |
+
"unk_token_id": 3,
|
31 |
+
"use_cache": true,
|
32 |
+
"vocab_size": 5000
|
33 |
+
}
|
demo.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# demo.py - Quick demo of the model
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
model_name = "raihan-js/medllm-10m"
|
5 |
+
|
6 |
+
print("Loading MedLLM...")
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
+
|
10 |
+
prompts = [
|
11 |
+
"Symptoms of diabetes include",
|
12 |
+
"Treatment for high blood pressure",
|
13 |
+
"The patient presents with"
|
14 |
+
]
|
15 |
+
|
16 |
+
print("\nGenerating medical text:")
|
17 |
+
for prompt in prompts:
|
18 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
19 |
+
outputs = model.generate(
|
20 |
+
**inputs,
|
21 |
+
max_length=50,
|
22 |
+
do_sample=True,
|
23 |
+
temperature=0.7,
|
24 |
+
pad_token_id=tokenizer.eos_token_id
|
25 |
+
)
|
26 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
+
print(f"\nPrompt: {prompt}")
|
28 |
+
print(f"Response: {response}")
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.55.0"
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c0921bd52a1e086e165e22e2abeea2b79804ea827700fd9003ee5f31168aba8
|
3 |
+
size 112178920
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<pad>",
|
3 |
+
"eos_token": "</s>",
|
4 |
+
"mask_token": "<mask>",
|
5 |
+
"pad_token": "<s>",
|
6 |
+
"unk_token": "<unk>"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<pad>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"eos_token": "</s>",
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 1000000000000000019884624838656,
|
50 |
+
"pad_token": "<s>",
|
51 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
52 |
+
"unk_token": "<unk>"
|
53 |
+
}
|
training_config.yaml
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
data:
|
2 |
+
max_length: 512
|
3 |
+
min_doc_length: 100
|
4 |
+
stride: 256
|
5 |
+
huggingface:
|
6 |
+
license: apache-2.0
|
7 |
+
model_name: raihan-js/medllm-10m-v2
|
8 |
+
private: false
|
9 |
+
model:
|
10 |
+
activation: gelu
|
11 |
+
d_ff: 2048
|
12 |
+
d_model: 512
|
13 |
+
dropout: 0.1
|
14 |
+
max_seq_len: 512
|
15 |
+
n_heads: 8
|
16 |
+
n_layers: 8
|
17 |
+
name: MedLLM-10M-v2
|
18 |
+
vocab_size: 5000
|
19 |
+
paths:
|
20 |
+
data_dir: ./data
|
21 |
+
logs_dir: ./logs
|
22 |
+
model_dir: ./checkpoints/medllm-10m
|
23 |
+
tokenizer_dir: ./tokenizer/vocab
|
24 |
+
scraping:
|
25 |
+
delay_between_requests: 0.5
|
26 |
+
max_retries: 3
|
27 |
+
max_workers: 8
|
28 |
+
timeout: 30
|
29 |
+
training:
|
30 |
+
batch_size: 4
|
31 |
+
eval_steps: 50
|
32 |
+
fp16: true
|
33 |
+
grad_clip: 1.0
|
34 |
+
gradient_accumulation_steps: 8
|
35 |
+
learning_rate: 0.0003
|
36 |
+
num_epochs: 10
|
37 |
+
save_steps: 100
|
38 |
+
warmup_steps: 200
|
39 |
+
weight_decay: 0.01
|