# demo.py - Quick demo of the model from transformers import AutoTokenizer, AutoModelForCausalLM model_name = "raihan-js/medllm-10m" print("Loading MedLLM...") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) prompts = [ "Symptoms of diabetes include", "Treatment for high blood pressure", "The patient presents with" ] print("\nGenerating medical text:") for prompt in prompts: inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( **inputs, max_length=50, do_sample=True, temperature=0.7, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(f"\nPrompt: {prompt}") print(f"Response: {response}")