| import argparse, torch | |
| from transformers import pipeline | |
| def main(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--text", type=str, default=( | |
| "Artificial intelligence is transforming education by enabling personalized learning. " | |
| "Teachers can use AI-driven tools to understand student progress and tailor activities." | |
| )) | |
| parser.add_argument("--max_length", type=int, default=120) | |
| parser.add_argument("--min_length", type=int, default=40) | |
| args = parser.parse_args() | |
| device = 0 if torch.cuda.is_available() else -1 | |
| summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", device=device) | |
| out = summarizer(args.text, max_length=args.max_length, min_length=args.min_length, do_sample=False) | |
| print(out[0]["summary_text"]) | |
| if __name__ == "__main__": | |
| main() | |