Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,209 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- yahma/alpaca-cleaned
|
| 5 |
+
---
|
| 6 |
+
## Model Details
|
| 7 |
+
|
| 8 |
+
This model builds upon the neuromorphic **Llama-SNN-LTC** base architecture, incorporating **Spiking Neural Networks (SNNs)** and **Liquid Time Constants (LTCs)**, and fine-tunes it specifically for instruction following using the Alpaca Cleaned dataset.
|
| 9 |
+
|
| 10 |
+
**Model Type**: Instruction-Following Language Model with Neuromorphic Enhancements
|
| 11 |
+
**Supported Languages**: English
|
| 12 |
+
**Number of Parameters**: 155.8M
|
| 13 |
+
**Context Length**: 1024 tokens
|
| 14 |
+
**Base Architecture**: Llama with SNN/LTC modifications
|
| 15 |
+
**Base Model**: rootxhacker/arthemis-lm
|
| 16 |
+
**Fine-tuning Data**: Alpaca Cleaned (~52K instruction-response pairs)
|
| 17 |
+
|
| 18 |
+
### Architecture Features
|
| 19 |
+
- **Spiking Neural Networks** in attention mechanisms for temporal processing
|
| 20 |
+
- **Liquid Time Constants** in feed-forward layers for adaptive dynamics
|
| 21 |
+
- **12-layer transformer backbone** with neuromorphic enhancements
|
| 22 |
+
- **RoPE positional encoding** for sequence understanding
|
| 23 |
+
- **Custom surrogate gradient training** for differentiable spike computation
|
| 24 |
+
- **Instruction-following fine-tuning** for enhanced conversational abilities
|
| 25 |
+
|
| 26 |
+
Here are my major model configurations:
|
| 27 |
+
|
| 28 |
+
```
|
| 29 |
+
hidden_size = 768
|
| 30 |
+
intermediate_size = 2048
|
| 31 |
+
num_hidden_layers = 12
|
| 32 |
+
num_attention_heads = 12
|
| 33 |
+
num_key_value_heads = 12
|
| 34 |
+
max_position_embeddings = 1024
|
| 35 |
+
vocab_size = 50257
|
| 36 |
+
spiking_threshold = 1.0
|
| 37 |
+
ltc_hidden_size = 256
|
| 38 |
+
ltc_layers = 2
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
## Usage
|
| 42 |
+
|
| 43 |
+
### Install dependencies
|
| 44 |
+
```bash
|
| 45 |
+
pip install transformers torch numpy
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
### Run code!
|
| 49 |
+
```python
|
| 50 |
+
# Note: This model requires custom implementation due to SNN/LTC architecture
|
| 51 |
+
# Standard transformers library cannot load this model directly
|
| 52 |
+
|
| 53 |
+
# For custom loading, you'll need the specialized architecture:
|
| 54 |
+
from custom_model import LlamaSNNLTCModel
|
| 55 |
+
from transformers import AutoTokenizer
|
| 56 |
+
|
| 57 |
+
# Load tokenizer
|
| 58 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small")
|
| 59 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 60 |
+
|
| 61 |
+
# Load the instruction-tuned model
|
| 62 |
+
model = LlamaSNNLTCModel.from_pretrained("rootxhacker/arthemis-instruct")
|
| 63 |
+
|
| 64 |
+
# For instruction-following generation
|
| 65 |
+
def generate_instruction_response(instruction, input_text="", model=None, tokenizer=None, max_length=150):
|
| 66 |
+
model.eval()
|
| 67 |
+
device = next(model.parameters()).device
|
| 68 |
+
|
| 69 |
+
# Reset model states for clean generation
|
| 70 |
+
model.reset_states()
|
| 71 |
+
|
| 72 |
+
# Format prompt in Alpaca style
|
| 73 |
+
if input_text.strip():
|
| 74 |
+
prompt = f"### Instruction:\n{instruction}\n\n### Input:\n{input_text}\n\n### Response:\n"
|
| 75 |
+
else:
|
| 76 |
+
prompt = f"### Instruction:\n{instruction}\n\n### Response:\n"
|
| 77 |
+
|
| 78 |
+
inputs = tokenizer(prompt, return_tensors='pt').to(device)
|
| 79 |
+
input_ids = inputs['input_ids']
|
| 80 |
+
|
| 81 |
+
with torch.no_grad():
|
| 82 |
+
for _ in range(max_length - input_ids.shape[1]):
|
| 83 |
+
outputs = model(input_ids)
|
| 84 |
+
logits = outputs['logits'][0, -1, :]
|
| 85 |
+
|
| 86 |
+
# Sample with temperature for more natural responses
|
| 87 |
+
logits = logits / 0.7
|
| 88 |
+
probs = torch.softmax(logits, dim=-1)
|
| 89 |
+
next_token = torch.multinomial(probs, 1)
|
| 90 |
+
|
| 91 |
+
input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=-1)
|
| 92 |
+
|
| 93 |
+
if next_token.item() == tokenizer.eos_token_id:
|
| 94 |
+
break
|
| 95 |
+
|
| 96 |
+
generated = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
| 97 |
+
|
| 98 |
+
# Extract just the response part
|
| 99 |
+
if "### Response:\n" in generated:
|
| 100 |
+
response = generated.split("### Response:\n")[-1].strip()
|
| 101 |
+
return response
|
| 102 |
+
|
| 103 |
+
return generated
|
| 104 |
+
|
| 105 |
+
# Example usage
|
| 106 |
+
instruction = "Explain what artificial intelligence is in simple terms."
|
| 107 |
+
response = generate_instruction_response(instruction, model=model, tokenizer=tokenizer)
|
| 108 |
+
print(f"Instruction: {instruction}")
|
| 109 |
+
print(f"Response: {response}")
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
## Evaluation
|
| 114 |
+
|
| 115 |
+
I performed evaluation using the standard lm-evaluation-harness setup. Following similar methodology to TinyLlama and MicroLlama, I used acc_norm for most datasets except for winogrande and boolq which used acc as the metrics.
|
| 116 |
+
|
| 117 |
+
### Results Comparison
|
| 118 |
+
|
| 119 |
+
| Model | Params | Budget | HellaSwag | OBQA | WinoGrande | ARC_e | ARC_c | BoolQ | Avg |
|
| 120 |
+
|-------|--------|--------|-----------|------|------------|-------|-------|-------|-----|
|
| 121 |
+
| **rootxhacker/arthemis-lm** | **155.8M** | **<$50** | **24.65** | **20.60** | **48.10** | **28.20** | **22.20** | **39.80** | **30.59** |
|
| 122 |
+
| google/bert-large-uncased | 336M | N/A | 24.53 | 26.20 | 49.80 | 25.08 | 25.68 | 40.86 | 32.03 |
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
## Technical Specifications
|
| 126 |
+
|
| 127 |
+
```
|
| 128 |
+
Architecture: Llama + Spiking Neural Networks + Liquid Time Constants
|
| 129 |
+
Hidden Size: 768
|
| 130 |
+
Intermediate Size: 2048
|
| 131 |
+
Attention Heads: 12
|
| 132 |
+
Layers: 12
|
| 133 |
+
Max Position Embeddings: 1024
|
| 134 |
+
Vocabulary Size: 50,257
|
| 135 |
+
Spiking Threshold: 1.0
|
| 136 |
+
LTC Hidden Size: 256
|
| 137 |
+
Training Precision: FP32
|
| 138 |
+
Fine-tuning Dataset: Alpaca Cleaned (52K instructions)
|
| 139 |
+
```
|
| 140 |
+
|
| 141 |
+
## Training Details
|
| 142 |
+
|
| 143 |
+
The model was fine-tuned from rootxhacker/arthemis-lm using:
|
| 144 |
+
- **Base Model**: rootxhacker/arthemis-lm (pretrained neuromorphic LLM)
|
| 145 |
+
- **Dataset**: Alpaca Cleaned (~52K instruction-response pairs)
|
| 146 |
+
- **Hardware**: Google Colab Pro Plus (A100 GPU)
|
| 147 |
+
- **Training Steps**: 5,000 steps
|
| 148 |
+
- **Batch Size**: 4 with gradient accumulation
|
| 149 |
+
- **Learning Rate**: 5e-5 (lower for fine-tuning)
|
| 150 |
+
- **Precision**: FP32 for stability with neuromorphic components
|
| 151 |
+
|
| 152 |
+
### Key Features
|
| 153 |
+
- **Instruction Format**: Uses Alpaca's structured instruction format
|
| 154 |
+
- **Response Generation**: Optimized for helpful, accurate responses
|
| 155 |
+
- **Neuromorphic Preservation**: Maintains SNN/LTC benefits during fine-tuning
|
| 156 |
+
- **Budget-Conscious**: Additional fine-tuning cost under $10
|
| 157 |
+
|
| 158 |
+
## Fine-tuning Process
|
| 159 |
+
|
| 160 |
+
The fine-tuning process involved:
|
| 161 |
+
1. **Base Model Loading**: Started from the pretrained arthemis-lm checkpoint
|
| 162 |
+
2. **Data Formatting**: Converted Alpaca instructions to proper format
|
| 163 |
+
3. **Careful Training**: Lower learning rate to preserve base model knowledge
|
| 164 |
+
4. **State Management**: Proper handling of SNN/LTC states during training
|
| 165 |
+
5. **Validation**: Continuous monitoring of instruction-following quality
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
## Limitations
|
| 169 |
+
|
| 170 |
+
- **Training Data**: Limited to Alpaca Cleaned dataset scope
|
| 171 |
+
- **Context Length**: Maximum 1024 tokens
|
| 172 |
+
- **Domain**: Primarily English instructions
|
| 173 |
+
- **Custom Architecture**: Requires specialized loading code
|
| 174 |
+
- **Scale**: Smaller than commercial instruction models
|
| 175 |
+
|
| 176 |
+
## Model Sources
|
| 177 |
+
|
| 178 |
+
- **Repository**: [Coming Soon]
|
| 179 |
+
- **Base Model**: [rootxhacker/arthemis-lm](https://huggingface.co/rootxhacker/arthemis-lm)
|
| 180 |
+
- **Hugging Face**: [rootxhacker/arthemis-instruct](https://huggingface.co/rootxhacker/arthemis-instruct)
|
| 181 |
+
|
| 182 |
+
## Future Work
|
| 183 |
+
|
| 184 |
+
- Scale instruction dataset for broader capabilities
|
| 185 |
+
- Add multi-turn conversation support
|
| 186 |
+
- Implement reinforcement learning from human feedback (RLHF)
|
| 187 |
+
- Explore specialized instruction types (coding, math, reasoning)
|
| 188 |
+
- Compare instruction-following efficiency with standard transformers
|
| 189 |
+
|
| 190 |
+
## Acknowledgments
|
| 191 |
+
|
| 192 |
+
Special thanks to **keeeeenw** for the inspiration and open-source MicroLlama project, which demonstrated that impressive language models can be built on a budget. This work extends those principles to instruction-following capabilities while exploring neuromorphic computing approaches.
|
| 193 |
+
|
| 194 |
+
Thanks to the Stanford Alpaca team for the high-quality instruction dataset that made this fine-tuning possible.
|
| 195 |
+
|
| 196 |
+
## Citation
|
| 197 |
+
|
| 198 |
+
```bibtex
|
| 199 |
+
@misc{arthemis-instruct-2024,
|
| 200 |
+
title={Arthemis-Instruct: A Neuromorphic Instruction-Following Model with Spiking Neural Networks and Liquid Time Constants},
|
| 201 |
+
author={rootxhacker},
|
| 202 |
+
year={2024},
|
| 203 |
+
howpublished={\url{https://huggingface.co/rootxhacker/arthemis-instruct}}
|
| 204 |
+
}
|
| 205 |
+
```
|
| 206 |
+
|
| 207 |
+
## License
|
| 208 |
+
|
| 209 |
+
Apache License 2.0
|