--- license: mit datasets: - yahma/alpaca-cleaned --- ## Model Details This model builds upon the neuromorphic **Llama-SNN-LTC** base architecture, incorporating **Spiking Neural Networks (SNNs)** and **Liquid Time Constants (LTCs)**, and fine-tunes it specifically for instruction following using the Alpaca Cleaned dataset. **Model Type**: Instruction-Following Language Model with Neuromorphic Enhancements **Supported Languages**: English **Number of Parameters**: 155.8M **Context Length**: 1024 tokens **Base Architecture**: Llama with SNN/LTC modifications **Base Model**: rootxhacker/arthemis-lm **Fine-tuning Data**: Alpaca Cleaned (~52K instruction-response pairs) ### Architecture Features - **Spiking Neural Networks** in attention mechanisms for temporal processing - **Liquid Time Constants** in feed-forward layers for adaptive dynamics - **12-layer transformer backbone** with neuromorphic enhancements - **RoPE positional encoding** for sequence understanding - **Custom surrogate gradient training** for differentiable spike computation - **Instruction-following fine-tuning** for enhanced conversational abilities Here are my major model configurations: ``` hidden_size = 768 intermediate_size = 2048 num_hidden_layers = 12 num_attention_heads = 12 num_key_value_heads = 12 max_position_embeddings = 1024 vocab_size = 50257 spiking_threshold = 1.0 ltc_hidden_size = 256 ltc_layers = 2 ``` ## Usage ### Install dependencies ```bash pip install transformers torch numpy ``` ## Inference This gist has full code for inference ``` bash https://gist.github.com/harishsg993010/e632de8b15a3ab1ff03e3912f55109ea ``` ### Run code! ```python # Note: This model requires custom implementation due to SNN/LTC architecture # Standard transformers library cannot load this model directly # For custom loading, you'll need the specialized architecture: from custom_model import LlamaSNNLTCModel from transformers import AutoTokenizer # Load tokenizer tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-small") tokenizer.pad_token = tokenizer.eos_token # Load the instruction-tuned model model = LlamaSNNLTCModel.from_pretrained("rootxhacker/arthemis-instruct") # For instruction-following generation def generate_instruction_response(instruction, input_text="", model=None, tokenizer=None, max_length=150): model.eval() device = next(model.parameters()).device # Reset model states for clean generation model.reset_states() # Format prompt in Alpaca style if input_text.strip(): prompt = f"### Instruction:\n{instruction}\n\n### Input:\n{input_text}\n\n### Response:\n" else: prompt = f"### Instruction:\n{instruction}\n\n### Response:\n" inputs = tokenizer(prompt, return_tensors='pt').to(device) input_ids = inputs['input_ids'] with torch.no_grad(): for _ in range(max_length - input_ids.shape[1]): outputs = model(input_ids) logits = outputs['logits'][0, -1, :] # Sample with temperature for more natural responses logits = logits / 0.7 probs = torch.softmax(logits, dim=-1) next_token = torch.multinomial(probs, 1) input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=-1) if next_token.item() == tokenizer.eos_token_id: break generated = tokenizer.decode(input_ids[0], skip_special_tokens=True) # Extract just the response part if "### Response:\n" in generated: response = generated.split("### Response:\n")[-1].strip() return response return generated # Example usage instruction = "Explain what artificial intelligence is in simple terms." response = generate_instruction_response(instruction, model=model, tokenizer=tokenizer) print(f"Instruction: {instruction}") print(f"Response: {response}") ``` ## Evaluation I performed evaluation using the https://gist.github.com/harishsg993010/e3c31c2d2c8207384ee263627f990300 ### Results Comparison | Model | Params | Budget | HellaSwag | OBQA | WinoGrande | ARC_e | ARC_c | BoolQ | Avg | |-------|--------|--------|-----------|------|------------|-------|-------|-------|-----| | **rootxhacker/arthemis-lm** | **155.8M** | **<$50** | **24.65** | **20.60** | **48.10** | **28.20** | **22.20** | **39.80** | **30.59** | | google/bert-large-uncased | 336M | N/A | 24.53 | 26.20 | 49.80 | 25.08 | 25.68 | 40.86 | 32.03 | ## Technical Specifications ``` Architecture: Llama + Spiking Neural Networks + Liquid Time Constants Hidden Size: 768 Intermediate Size: 2048 Attention Heads: 12 Layers: 12 Max Position Embeddings: 1024 Vocabulary Size: 50,257 Spiking Threshold: 1.0 LTC Hidden Size: 256 Training Precision: FP32 Fine-tuning Dataset: Alpaca Cleaned (52K instructions) ``` ## Training Details The model was fine-tuned from rootxhacker/arthemis-lm using: - **Base Model**: rootxhacker/arthemis-lm (pretrained neuromorphic LLM) - **Dataset**: Alpaca Cleaned (~52K instruction-response pairs) - **Hardware**: Google Colab Pro Plus (A100 GPU) - **Training Steps**: 5,000 steps - **Batch Size**: 4 with gradient accumulation - **Learning Rate**: 5e-5 (lower for fine-tuning) - **Precision**: FP32 for stability with neuromorphic components ### Key Features - **Instruction Format**: Uses Alpaca's structured instruction format - **Response Generation**: Optimized for helpful, accurate responses - **Neuromorphic Preservation**: Maintains SNN/LTC benefits during fine-tuning - **Budget-Conscious**: Additional fine-tuning cost under $10 ## Fine-tuning Process The fine-tuning process involved: 1. **Base Model Loading**: Started from the pretrained arthemis-lm checkpoint 2. **Data Formatting**: Converted Alpaca instructions to proper format 3. **Careful Training**: Lower learning rate to preserve base model knowledge 4. **State Management**: Proper handling of SNN/LTC states during training 5. **Validation**: Continuous monitoring of instruction-following quality ## Limitations - **Training Data**: Limited to Alpaca Cleaned dataset scope - **Context Length**: Maximum 1024 tokens - **Domain**: Primarily English instructions - **Custom Architecture**: Requires specialized loading code - **Scale**: Smaller than commercial instruction models ## Model Sources - **Repository**: [Coming Soon] - **Base Model**: [rootxhacker/arthemis-lm](https://huggingface.co/rootxhacker/arthemis-lm) - **Hugging Face**: [rootxhacker/arthemis-instruct](https://huggingface.co/rootxhacker/arthemis-instruct) ## Future Work - Scale instruction dataset for broader capabilities - Add multi-turn conversation support - Implement reinforcement learning from human feedback (RLHF) - Explore specialized instruction types (coding, math, reasoning) - Compare instruction-following efficiency with standard transformers ## Acknowledgments Special thanks to **keeeeenw** for the inspiration and open-source MicroLlama project, which demonstrated that impressive language models can be built on a budget. This work extends those principles to instruction-following capabilities while exploring neuromorphic computing approaches. Thanks to the Stanford Alpaca team for the high-quality instruction dataset that made this fine-tuning possible. ## Citation ```bibtex @misc{arthemis-instruct-2024, title={Arthemis-Instruct: A Neuromorphic Instruction-Following Model with Spiking Neural Networks and Liquid Time Constants}, author={rootxhacker}, year={2024}, howpublished={\url{https://huggingface.co/rootxhacker/arthemis-instruct}} } ``` ## License Apache License 2.0