--- license: apache-2.0 datasets: - sabma-labs/endless-move-code base_model: - Qwen/Qwen2.5-Coder-32B-Instruct tags: - move - blockchain - endless - smart-contracts - code-generation - programming --- # Endless-Coder-32B-Instruct Large language model curated by **sabma-labs** for Endless Protocol Move-language workflows: answering Move questions, generating modules, and supporting Endless-specific conventions. ## Usage Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_id = "sabma-labs/Endless-Coder-32B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True, ) prompt = ( "<|system|>You are a Move language programming assistant developed by Endless Labs.<|end|>" "<|user|>Explain how to create a counter module in Move.<|end|>" "<|assistant|>" ) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=512, temperature=0.7, top_p=0.9, ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Contact - **Author:** sabma-labs - **Repository:** https://huggingface.co/sabma-labs/Endless-Coder-32B-Instruct - **Support:** open an issue on the Hugging Face repo or reach out via sabma-labs channels. --- license: apache-2.0 ---