Update README.md
Browse files
README.md
CHANGED
|
@@ -35,8 +35,48 @@ model-index:
|
|
| 35 |
---
|
| 36 |
## Model objective
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
## Metrics
|
| 41 |
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
---
|
| 36 |
## Model objective
|
| 37 |
|
| 38 |
+
TBF
|
| 39 |
+
|
| 40 |
+
## Model specs
|
| 41 |
+
|
| 42 |
+
This model is a fine-tuned version of [spanish-t5-small](https://huggingface.co/flax-community/spanish-t5-small) on the data described below.
|
| 43 |
+
It achieves the following results on the evaluation set:
|
| 44 |
+
- 'eval_bleu': 93.8347,
|
| 45 |
+
- 'eval_f1': 0.9904,
|
| 46 |
+
|
| 47 |
+
## Training procedure
|
| 48 |
+
### Training hyperparameters
|
| 49 |
+
The following hyperparameters were used during training:
|
| 50 |
+
- learning_rate: 1e-04
|
| 51 |
+
- train_batch_size: 32
|
| 52 |
+
- seed: 42
|
| 53 |
+
- num_epochs: 10
|
| 54 |
+
- weight_decay: 0,01
|
| 55 |
+
|
| 56 |
+
## Training and evaluation data
|
| 57 |
+
|
| 58 |
+
TBF
|
| 59 |
|
| 60 |
## Metrics
|
| 61 |
|
| 62 |
+
For training, we used both Blue (sacrebleu implementation in HF) and BertScore. The first one, a standard in Machine Translation processes, has been added for ensuring robustness of the newly generated data, while the second one is kept for keeping the expected semantic similarity.
|
| 63 |
+
|
| 64 |
+
However, given the actual use case, we expect generated segments to be very close to input segments and to label segments in training. As an example, we can take the following:
|
| 65 |
+
|
| 66 |
+
inputSegment = 'De acuerdo con las informaciones anteriores , las alumnas se han quejado de la actitud de los profesores en los exámenes finales. Los representantes estudiantiles son los alumnos Juanju y Javi.'
|
| 67 |
+
expectedOutput (label) = 'De acuerdo con las informaciones anteriores, el alumnado se ha quejado de la actitud del profesorado en los exámenes finales. Los representantes estudiantiles son los alumnos Juanju y Javi.'
|
| 68 |
+
actualOutput = 'De acuerdo con las informaciones anteriores, el alumnado se ha quejado de la actitud del profesorado en los exámenes finales. Los representantes estudiantiles son el alumnado Juanju y Javi.'
|
| 69 |
+
|
| 70 |
+
As you can see, segments are pretty similar. So, instead of measuring Bleu or BertScore here, we propose an alternate metric that would be DiffBleu:
|
| 71 |
+
|
| 72 |
+
$$DiffBleu = BLEU(actualOutput - inputSegment, labels - inputSegment)$$
|
| 73 |
+
|
| 74 |
+
Where the minuses as in set notation. This way, we also evaluate DiffBleu after the model has been trained.
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
## Usage example
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
Enjoy!
|