Model save
Browse files- README.md +68 -0
- all_results.json +8 -0
- train_results.json +8 -0
- trainer_state.json +217 -0
README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Llama-3.1-8B-Instruct
|
3 |
+
library_name: transformers
|
4 |
+
model_name: new-Llama3.1-8b-instruct-RL
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
- trl
|
8 |
+
- grpo
|
9 |
+
licence: license
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for new-Llama3.1-8b-instruct-RL
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct).
|
15 |
+
It has been trained using [TRL](https://github.com/huggingface/trl).
|
16 |
+
|
17 |
+
## Quick start
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
|
23 |
+
generator = pipeline("text-generation", model="sravanthib/new-Llama3.1-8b-instruct-RL", device="cuda")
|
24 |
+
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
|
25 |
+
print(output["generated_text"])
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training procedure
|
29 |
+
|
30 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/golden-goose/huggingface/runs/k9bt3x5h)
|
31 |
+
|
32 |
+
|
33 |
+
This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
|
34 |
+
|
35 |
+
### Framework versions
|
36 |
+
|
37 |
+
- TRL: 0.16.0.dev0
|
38 |
+
- Transformers: 4.49.0
|
39 |
+
- Pytorch: 2.5.1
|
40 |
+
- Datasets: 3.3.2
|
41 |
+
- Tokenizers: 0.21.0
|
42 |
+
|
43 |
+
## Citations
|
44 |
+
|
45 |
+
Cite GRPO as:
|
46 |
+
|
47 |
+
```bibtex
|
48 |
+
@article{zhihong2024deepseekmath,
|
49 |
+
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
|
50 |
+
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
|
51 |
+
year = 2024,
|
52 |
+
eprint = {arXiv:2402.03300},
|
53 |
+
}
|
54 |
+
|
55 |
+
```
|
56 |
+
|
57 |
+
Cite TRL as:
|
58 |
+
|
59 |
+
```bibtex
|
60 |
+
@misc{vonwerra2022trl,
|
61 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
62 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
63 |
+
year = 2020,
|
64 |
+
journal = {GitHub repository},
|
65 |
+
publisher = {GitHub},
|
66 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
67 |
+
}
|
68 |
+
```
|
all_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 0.009057209056256146,
|
4 |
+
"train_runtime": 7830.5569,
|
5 |
+
"train_samples": 7500,
|
6 |
+
"train_samples_per_second": 0.958,
|
7 |
+
"train_steps_per_second": 0.007
|
8 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"total_flos": 0.0,
|
3 |
+
"train_loss": 0.009057209056256146,
|
4 |
+
"train_runtime": 7830.5569,
|
5 |
+
"train_samples": 7500,
|
6 |
+
"train_samples_per_second": 0.958,
|
7 |
+
"train_steps_per_second": 0.007
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9893390191897654,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 58,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"clip_ratio": 0.0,
|
13 |
+
"completion_length": 559.5167694091797,
|
14 |
+
"epoch": 0.017057569296375266,
|
15 |
+
"grad_norm": 0.012841759249567986,
|
16 |
+
"kl": 0.0,
|
17 |
+
"learning_rate": 5e-07,
|
18 |
+
"loss": 0.0087,
|
19 |
+
"reward": 0.11495536100119352,
|
20 |
+
"reward_std": 0.195150856859982,
|
21 |
+
"rewards/accuracy_reward": 0.11495536100119352,
|
22 |
+
"rewards/format_reward": 0.0,
|
23 |
+
"step": 1
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"clip_ratio": 0.0,
|
27 |
+
"completion_length": 555.0773105621338,
|
28 |
+
"epoch": 0.08528784648187633,
|
29 |
+
"grad_norm": 0.014003963209688663,
|
30 |
+
"kl": 0.0001754462718963623,
|
31 |
+
"learning_rate": 2.5e-06,
|
32 |
+
"loss": 0.0047,
|
33 |
+
"reward": 0.11049107764847577,
|
34 |
+
"reward_std": 0.19013801333494484,
|
35 |
+
"rewards/accuracy_reward": 0.11049107764847577,
|
36 |
+
"rewards/format_reward": 0.0,
|
37 |
+
"step": 5
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"clip_ratio": 0.0,
|
41 |
+
"completion_length": 538.5312759399415,
|
42 |
+
"epoch": 0.17057569296375266,
|
43 |
+
"grad_norm": 0.01436670869588852,
|
44 |
+
"kl": 0.00021240711212158203,
|
45 |
+
"learning_rate": 2.956412726139078e-06,
|
46 |
+
"loss": 0.0048,
|
47 |
+
"reward": 0.13459821995347737,
|
48 |
+
"reward_std": 0.20578723903745413,
|
49 |
+
"rewards/accuracy_reward": 0.13459821995347737,
|
50 |
+
"rewards/format_reward": 0.0,
|
51 |
+
"step": 10
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"clip_ratio": 0.0,
|
55 |
+
"completion_length": 534.3341758728027,
|
56 |
+
"epoch": 0.255863539445629,
|
57 |
+
"grad_norm": 0.014759319834411144,
|
58 |
+
"kl": 0.00021679401397705077,
|
59 |
+
"learning_rate": 2.7836719084521715e-06,
|
60 |
+
"loss": 0.0129,
|
61 |
+
"reward": 0.11629464784637093,
|
62 |
+
"reward_std": 0.19606330525130033,
|
63 |
+
"rewards/accuracy_reward": 0.11629464784637093,
|
64 |
+
"rewards/format_reward": 0.0,
|
65 |
+
"step": 15
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"clip_ratio": 0.0,
|
69 |
+
"completion_length": 532.0986877441406,
|
70 |
+
"epoch": 0.3411513859275053,
|
71 |
+
"grad_norm": 0.01396097894757986,
|
72 |
+
"kl": 0.00022270679473876954,
|
73 |
+
"learning_rate": 2.4946839873611927e-06,
|
74 |
+
"loss": 0.0112,
|
75 |
+
"reward": 0.1265625054948032,
|
76 |
+
"reward_std": 0.2010766550898552,
|
77 |
+
"rewards/accuracy_reward": 0.1265625054948032,
|
78 |
+
"rewards/format_reward": 0.0,
|
79 |
+
"step": 20
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"clip_ratio": 0.0,
|
83 |
+
"completion_length": 551.1631965637207,
|
84 |
+
"epoch": 0.42643923240938164,
|
85 |
+
"grad_norm": 0.014589853584766388,
|
86 |
+
"kl": 0.00024003982543945311,
|
87 |
+
"learning_rate": 2.1156192081791355e-06,
|
88 |
+
"loss": 0.0043,
|
89 |
+
"reward": 0.1200892923399806,
|
90 |
+
"reward_std": 0.19121555145829916,
|
91 |
+
"rewards/accuracy_reward": 0.1200892923399806,
|
92 |
+
"rewards/format_reward": 0.0,
|
93 |
+
"step": 25
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"clip_ratio": 0.0,
|
97 |
+
"completion_length": 567.554711151123,
|
98 |
+
"epoch": 0.511727078891258,
|
99 |
+
"grad_norm": 0.013035917654633522,
|
100 |
+
"kl": 0.00024027824401855468,
|
101 |
+
"learning_rate": 1.6808050203829845e-06,
|
102 |
+
"loss": 0.0111,
|
103 |
+
"reward": 0.11250000512227416,
|
104 |
+
"reward_std": 0.19112712442874907,
|
105 |
+
"rewards/accuracy_reward": 0.11250000512227416,
|
106 |
+
"rewards/format_reward": 0.0,
|
107 |
+
"step": 30
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"clip_ratio": 0.0,
|
111 |
+
"completion_length": 555.3761436462403,
|
112 |
+
"epoch": 0.5970149253731343,
|
113 |
+
"grad_norm": 0.014955726452171803,
|
114 |
+
"kl": 0.0002460002899169922,
|
115 |
+
"learning_rate": 1.2296174432791415e-06,
|
116 |
+
"loss": 0.0133,
|
117 |
+
"reward": 0.11696429131552577,
|
118 |
+
"reward_std": 0.1858937400393188,
|
119 |
+
"rewards/accuracy_reward": 0.11696429131552577,
|
120 |
+
"rewards/format_reward": 0.0,
|
121 |
+
"step": 35
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"clip_ratio": 0.0,
|
125 |
+
"completion_length": 547.1129707336426,
|
126 |
+
"epoch": 0.6823027718550106,
|
127 |
+
"grad_norm": 0.014341042377054691,
|
128 |
+
"kl": 0.00026259422302246096,
|
129 |
+
"learning_rate": 8.029152419343472e-07,
|
130 |
+
"loss": 0.0045,
|
131 |
+
"reward": 0.1279017912223935,
|
132 |
+
"reward_std": 0.19265865609049798,
|
133 |
+
"rewards/accuracy_reward": 0.1279017912223935,
|
134 |
+
"rewards/format_reward": 0.0,
|
135 |
+
"step": 40
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"clip_ratio": 0.0,
|
139 |
+
"completion_length": 559.8629776000977,
|
140 |
+
"epoch": 0.767590618336887,
|
141 |
+
"grad_norm": 0.014500826597213745,
|
142 |
+
"kl": 0.0002582550048828125,
|
143 |
+
"learning_rate": 4.3933982822017883e-07,
|
144 |
+
"loss": 0.0107,
|
145 |
+
"reward": 0.12209822023287416,
|
146 |
+
"reward_std": 0.19157440066337586,
|
147 |
+
"rewards/accuracy_reward": 0.12209822023287416,
|
148 |
+
"rewards/format_reward": 0.0,
|
149 |
+
"step": 45
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"clip_ratio": 0.0,
|
153 |
+
"completion_length": 566.6609634399414,
|
154 |
+
"epoch": 0.8528784648187633,
|
155 |
+
"grad_norm": 0.014964189380407333,
|
156 |
+
"kl": 0.00025937557220458987,
|
157 |
+
"learning_rate": 1.718159615201853e-07,
|
158 |
+
"loss": 0.0148,
|
159 |
+
"reward": 0.12544643357396126,
|
160 |
+
"reward_std": 0.20125691760331393,
|
161 |
+
"rewards/accuracy_reward": 0.12544643357396126,
|
162 |
+
"rewards/format_reward": 0.0,
|
163 |
+
"step": 50
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"clip_ratio": 0.0,
|
167 |
+
"completion_length": 555.6741317749023,
|
168 |
+
"epoch": 0.9381663113006397,
|
169 |
+
"grad_norm": 0.012106225825846195,
|
170 |
+
"kl": 0.0002725839614868164,
|
171 |
+
"learning_rate": 2.4570139579284723e-08,
|
172 |
+
"loss": 0.0091,
|
173 |
+
"reward": 0.12388393525034189,
|
174 |
+
"reward_std": 0.1997589457780123,
|
175 |
+
"rewards/accuracy_reward": 0.12388393525034189,
|
176 |
+
"rewards/format_reward": 0.0,
|
177 |
+
"step": 55
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"clip_ratio": 0.0,
|
181 |
+
"completion_length": 555.804059346517,
|
182 |
+
"epoch": 0.9893390191897654,
|
183 |
+
"kl": 0.0002773602803548177,
|
184 |
+
"reward": 0.13988095987588167,
|
185 |
+
"reward_std": 0.21711470931768417,
|
186 |
+
"rewards/accuracy_reward": 0.13988095987588167,
|
187 |
+
"rewards/format_reward": 0.0,
|
188 |
+
"step": 58,
|
189 |
+
"total_flos": 0.0,
|
190 |
+
"train_loss": 0.009057209056256146,
|
191 |
+
"train_runtime": 7830.5569,
|
192 |
+
"train_samples_per_second": 0.958,
|
193 |
+
"train_steps_per_second": 0.007
|
194 |
+
}
|
195 |
+
],
|
196 |
+
"logging_steps": 5,
|
197 |
+
"max_steps": 58,
|
198 |
+
"num_input_tokens_seen": 0,
|
199 |
+
"num_train_epochs": 1,
|
200 |
+
"save_steps": 5,
|
201 |
+
"stateful_callbacks": {
|
202 |
+
"TrainerControl": {
|
203 |
+
"args": {
|
204 |
+
"should_epoch_stop": false,
|
205 |
+
"should_evaluate": false,
|
206 |
+
"should_log": false,
|
207 |
+
"should_save": true,
|
208 |
+
"should_training_stop": true
|
209 |
+
},
|
210 |
+
"attributes": {}
|
211 |
+
}
|
212 |
+
},
|
213 |
+
"total_flos": 0.0,
|
214 |
+
"train_batch_size": 16,
|
215 |
+
"trial_name": null,
|
216 |
+
"trial_params": null
|
217 |
+
}
|