--- library_name: transformers license: mit base_model: sumitD/table-transformer-structure-recognition-v1.1-all-finetuned tags: - generated_from_trainer model-index: - name: table-transformer-structure-recognition-v1.1-all-finetuned results: [] --- # table-transformer-structure-recognition-v1.1-all-finetuned This model is a fine-tuned version of [sumitD/table-transformer-structure-recognition-v1.1-all-finetuned](https://huggingface.co/sumitD/table-transformer-structure-recognition-v1.1-all-finetuned) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1419 - Map: 0.9219 - Map 50: 0.966 - Map 75: 0.9496 - Map Small: -1.0 - Map Medium: 0.8782 - Map Large: 0.921 - Mar 1: 0.5537 - Mar 10: 0.9407 - Mar 100: 0.9694 - Mar Small: -1.0 - Mar Medium: 0.9079 - Mar Large: 0.9693 - Map Table: 0.9882 - Mar 100 Table: 0.9964 - Map Table column: 0.9732 - Mar 100 Table column: 0.9892 - Map Table column header: 0.9543 - Mar 100 Table column header: 0.9847 - Map Table projected row header: 0.8673 - Mar 100 Table projected row header: 0.964 - Map Table row: 0.9584 - Mar 100 Table row: 0.9838 - Map Table spanning cell: 0.7903 - Mar 100 Table spanning cell: 0.8983 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Table | Mar 100 Table | Map Table column | Mar 100 Table column | Map Table column header | Mar 100 Table column header | Map Table projected row header | Mar 100 Table projected row header | Map Table row | Mar 100 Table row | Map Table spanning cell | Mar 100 Table spanning cell | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:---------:|:-------------:|:----------------:|:--------------------:|:-----------------------:|:---------------------------:|:------------------------------:|:----------------------------------:|:-------------:|:-----------------:|:-----------------------:|:---------------------------:| | 0.2338 | 1.0 | 23715 | 0.1991 | 0.8756 | 0.9505 | 0.9307 | -1.0 | 0.7912 | 0.8748 | 0.5395 | 0.9175 | 0.9471 | -1.0 | 0.8518 | 0.947 | 0.9844 | 0.9935 | 0.9582 | 0.981 | 0.9111 | 0.9647 | 0.7701 | 0.9364 | 0.9147 | 0.9577 | 0.7149 | 0.8496 | | 0.2048 | 2.0 | 47430 | 0.1915 | 0.8827 | 0.9567 | 0.9384 | -1.0 | 0.8103 | 0.8823 | 0.54 | 0.9197 | 0.9498 | -1.0 | 0.8538 | 0.9499 | 0.9855 | 0.9944 | 0.9564 | 0.9819 | 0.9047 | 0.9527 | 0.7905 | 0.9437 | 0.9222 | 0.9651 | 0.7371 | 0.8607 | | 0.1841 | 3.0 | 71145 | 0.1605 | 0.9087 | 0.9636 | 0.9467 | -1.0 | 0.8373 | 0.9077 | 0.548 | 0.933 | 0.9616 | -1.0 | 0.8868 | 0.9613 | 0.9836 | 0.9935 | 0.9703 | 0.9888 | 0.94 | 0.9771 | 0.8468 | 0.9545 | 0.9466 | 0.9781 | 0.765 | 0.8778 | | 0.1914 | 4.0 | 94860 | 0.1496 | 0.9181 | 0.9652 | 0.9496 | -1.0 | 0.8741 | 0.917 | 0.552 | 0.9387 | 0.9678 | -1.0 | 0.9024 | 0.9676 | 0.9886 | 0.9968 | 0.9724 | 0.9886 | 0.9508 | 0.9824 | 0.8561 | 0.9628 | 0.9574 | 0.9829 | 0.7836 | 0.8934 | | 0.1739 | 5.0 | 118575 | 0.1419 | 0.9219 | 0.966 | 0.9496 | -1.0 | 0.8782 | 0.921 | 0.5537 | 0.9407 | 0.9694 | -1.0 | 0.9079 | 0.9693 | 0.9882 | 0.9964 | 0.9732 | 0.9892 | 0.9543 | 0.9847 | 0.8673 | 0.964 | 0.9584 | 0.9838 | 0.7903 | 0.8983 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0