sweatSmile commited on
Commit
90e8dc1
·
verified ·
1 Parent(s): ab37e5c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +102 -0
README.md CHANGED
@@ -1,3 +1,105 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ tags:
4
+ - smollm
5
+ - python
6
+ - code-generation
7
+ - instruct
8
+ - qlora
9
+ - fine-tuned
10
+ - code
11
+ - nf4
12
+ datasets:
13
+ - flytech/python-codes-25k
14
+ model-index:
15
+ - name: HF-SmolLM-1.7B-0.5B-4bit-coder
16
+ results: []
17
+ language:
18
+ - en
19
+ pipeline_tag: text-generation
20
  ---
21
+
22
+ # HF-SmolLM-1.7B-0.5B-4bit-coder
23
+
24
+ ## Model Summary
25
+ **HF-SmolLM-1.7B-0.5B-4bit-coder** is a fine-tuned variant of [SmolLM-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B), optimized for **instruction-following in Python code generation tasks**.
26
+ It was trained on a **1,500-sample subset** of the [flytech/python-codes-25k](https://huggingface.co/datasets/flytech/python-codes-25k) dataset using **parameter-efficient fine-tuning (QLoRA 4-bit)**.
27
+
28
+ The model is suitable for:
29
+ - Generating Python code snippets from natural language instructions
30
+ - Completing short code functions
31
+ - Educational prototyping of fine-tuned LMs
32
+
33
+ ⚠️ This is **not a production-ready coding assistant**. Generated outputs must be manually reviewed before execution.
34
+
35
+ ---
36
+
37
+ ## Intended Uses & Limitations
38
+
39
+ ### ✅ Intended
40
+ - Research on parameter-efficient fine-tuning
41
+ - Educational demos of instruction-tuning workflows
42
+ - Prototype code generation experiments
43
+
44
+ ### ❌ Not Intended
45
+ - Deployment in production coding assistants
46
+ - Safety-critical applications
47
+ - Long-context multi-file programming tasks
48
+
49
+ ---
50
+
51
+ ## Training Details
52
+
53
+ ### Base Model
54
+ - **Name:** [HuggingFaceTB/SmolLM-1.7B](https://huggingface.co/HuggingFaceTB/SmolLM-1.7B)
55
+ - **Architecture:** Decoder-only causal LM
56
+ - **Total Parameters:** 1.72B
57
+ - **Fine-tuned Trainable Parameters:** ~9M (0.53%)
58
+
59
+ ### Dataset
60
+ - **Source:** [flytech/python-codes-25k](https://huggingface.co/datasets/flytech/python-codes-25k)
61
+ - **Subset Used:** 1,500 randomly sampled examples
62
+ - **Content:** Instruction + optional input → Python code output
63
+ - **Formatting:** Converted into `chat` format with `user` / `assistant` roles
64
+
65
+ ### Training Procedure
66
+ - **Framework:** Hugging Face Transformers + TRL (SFTTrainer)
67
+ - **Quantization:** 4-bit QLoRA (nf4) with bfloat16 compute when available
68
+ - **Effective Batch Size:** 6 (with accumulation)
69
+ - **Optimizer:** AdamW
70
+ - **Scheduler:** Cosine decay with warmup ratio 0.05
71
+ - **Epochs:** 3
72
+ - **Learning Rate:** 2e-4
73
+ - **Max Seq Length:** 64 tokens (training)
74
+ - **Mixed Precision:** FP16
75
+ - **Gradient Checkpointing:** Enabled
76
+
77
+ ---
78
+
79
+ ## Evaluation
80
+ No formal benchmark evaluation has been conducted yet.
81
+ Empirically, the model:
82
+ - Produces syntactically valid Python code for simple tasks
83
+ - Adheres to given instructions with reasonable accuracy
84
+ - Struggles with multi-step reasoning and long code outputs
85
+
86
+ ---
87
+
88
+ ## Example Usage
89
+
90
+ ```python
91
+ from transformers import AutoModelForCausalLM, AutoTokenizer
92
+
93
+ repo = "sweatSmile/HF-SmolLM-1.7B-0.5B-4bit-coder"
94
+ tokenizer = AutoTokenizer.from_pretrained(repo)
95
+ model = AutoModelForCausalLM.from_pretrained(repo, device_map="auto")
96
+
97
+ prompt = "Write a Python function that checks if a number is prime."
98
+ inputs = tokenizer.apply_chat_template(
99
+ [{"role": "user", "content": prompt}],
100
+ return_tensors="pt",
101
+ add_generation_prompt=True
102
+ ).to(model.device)
103
+
104
+ outputs = model.generate(inputs, max_new_tokens=150)
105
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))