File size: 3,254 Bytes
b697865
 
 
 
 
e5e1604
b697865
 
 
c8d5b79
 
 
b697865
e5e1604
b697865
7023d0f
b697865
 
 
28e6b7d
b697865
28e6b7d
b697865
 
28e6b7d
 
 
b697865
28e6b7d
b697865
 
28e6b7d
 
 
 
 
 
 
 
b697865
28e6b7d
 
b697865
28e6b7d
 
 
 
b697865
28e6b7d
 
 
b697865
28e6b7d
 
b697865
28e6b7d
 
 
 
 
b697865
28e6b7d
b697865
28e6b7d
b697865
28e6b7d
b697865
28e6b7d
 
 
b697865
28e6b7d
b697865
28e6b7d
 
b697865
28e6b7d
b697865
28e6b7d
 
 
 
 
b697865
28e6b7d
 
b697865
28e6b7d
 
9297f55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- rag
base_model: sentence-transformers/all-MiniLM-L6-v2
pipeline_tag: sentence-similarity
library_name: sentence-transformers
license: apache-2.0
language:
- en
---
# The Fastest Text Embedding Model: tabularisai/all-MiniLM-L2-v2

This model is distilled from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2), delivering **almost 2 times faster inference** in comparasion to the smallest all-MiniLM-L6-v2 model, while maintaining strong accuracy on CPU and GPU.

## Usage

### Retrieval-Augmented Generation (RAG) Example

Use this model as a retriever in a RAG pipeline:

```python
from sentence_transformers import SentenceTransformer, util
import faiss
import numpy as np

# Load embedding model
model = SentenceTransformer("tabularisai/all-MiniLM-L2-v2")

# Your 5 simple documents
documents = [
    "Renewable energy comes from natural sources.",
    "Solar panels convert sunlight into electricity.",
    "Wind turbines harness wind power.",
    "Fossil fuels are non-renewable sources of energy.",
    "Hydropower uses water to generate electricity."
]

# Embed documents
doc_embeddings = model.encode(documents, convert_to_numpy=True)

# Create FAISS index
dim = doc_embeddings.shape[1]
index = faiss.IndexFlatL2(dim)
index.add(doc_embeddings)

# Query
query = "What are the benefits of renewable energy?"
query_embedding = model.encode([query], convert_to_numpy=True)

# Search top 3 similar docs
D, I = index.search(query_embedding, k=3)

# Print results
print("Query:", query)
print("\nTop 3 similar documents:")
for rank, idx in enumerate(I[0]):
    print(f"{rank+1}. {documents[idx]} (score: {D[0][rank]:.4f})")

```

### Sentence Embedding Example

Install the library:

```bash
pip install -U sentence-transformers
```

Load the model and encode sentences:

```python
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("tabularisai/all-MiniLM-L2-v2")

sentences = [
    "The weather is lovely today.",
    "It's so sunny outside!",
    "He drove to the stadium.",
]

embeddings = model.encode(sentences)
print(embeddings.shape)  # [3, 384]

similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)  # [3, 3]
```


<table align="center">
  <tr>
    <td align="center">
      <a href="https://www.linkedin.com/company/tabularis-ai/">
        <img src="https://cdn.jsdelivr.net/gh/simple-icons/simple-icons/icons/linkedin.svg" alt="LinkedIn" width="30" height="30">
      </a>
    </td>
    <td align="center">
      <a href="https://x.com/tabularis_ai">
        <img src="https://cdn.jsdelivr.net/gh/simple-icons/simple-icons/icons/x.svg" alt="X" width="30" height="30">
      </a>
    </td>
    <td align="center">
      <a href="https://github.com/tabularis-ai">
        <img src="https://cdn.jsdelivr.net/gh/simple-icons/simple-icons/icons/github.svg" alt="GitHub" width="30" height="30">
      </a>
    </td>
    <td align="center">
      <a href="https://tabularis.ai">
        <img src="https://cdn.jsdelivr.net/gh/simple-icons/simple-icons/icons/internetarchive.svg" alt="Website" width="30" height="30">
      </a>
    </td>
  </tr>
</table>