File size: 20,128 Bytes
5a66725
5fc7c6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb70e51
 
 
5a66725
5589706
fb70e51
 
 
 
 
 
 
5589706
 
 
 
 
 
 
 
fb70e51
5589706
 
 
fb70e51
 
5589706
 
 
fb70e51
 
5589706
 
 
 
 
fb70e51
5589706
fb70e51
5589706
 
 
 
fb70e51
5589706
 
 
 
 
 
fb70e51
 
 
 
 
 
 
 
 
5589706
 
fb70e51
5589706
 
 
 
 
 
 
 
 
 
5a66725
 
5589706
5a66725
 
5589706
 
fb70e51
5a66725
 
5589706
5a66725
 
5589706
fb70e51
5589706
5a66725
 
5589706
5a66725
5589706
 
fb70e51
5589706
 
 
 
 
 
5a66725
5589706
 
 
 
4af1232
5589706
fb70e51
5589706
 
a2682f0
94d33d4
fb70e51
 
5589706
 
 
 
 
 
 
 
 
 
 
fb70e51
 
 
5589706
 
 
391b773
5589706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea165c3
 
fb70e51
 
86dd1f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb70e51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea165c3
 
 
5192910
 
 
 
 
 
 
 
ea165c3
fb70e51
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
---
language:
- zh
- en
- fr
- pt
- es
- ja
- tr
- ru
- ar
- ko
- th
- it
- de
- vi
- ms
- id
- tl
- hi
- pl
- cs
- nl
- km
- my
- fa
- gu
- ur
- te
- mr
- he
- bn
- ta
- uk
- bo
- kk
- mn
- ug
library_name: transformers
pipeline_tag: translation
license: apache-2.0
---

# Hunyuan-MT Technical Report

The model was presented in the paper [Hunyuan-MT Technical Report](https://arxiv.org/abs/2509.05209).

## Paper Abstract

In this report, we introduce Hunyuan-MT-7B, our first open-source multilingual translation model, which supports bidirectional translation across 33 major languages and places a special emphasis on translation between Mandarin and several ethnic minority languages as well as dialects. Furthermore, to serve and address diverse translation scenarios and enhance model performance at test time, we introduce Hunyuan-MT-Chimera-7B, a translation model inspired by the slow thinking mode. This model integrates multiple outputs generated by the Hunyuan-MT-7B model under varying parameter settings, thereby achieving performance superior to that of conventional slow-thinking models based on Chain-of-Thought (CoT). The development of our models follows a holistic training process specifically engineered for multilingual translation, which begins with general and MT-oriented pre-training to build foundational capabilities, proceeds to Supervised Fine-Tuning (SFT) for task-specific adaptation, and culminates in advanced alignment through Reinforcement Learning (RL) and weak-to-strong RL. Through comprehensive experimentation, we demonstrate that both Hunyuan-MT-7B and Hunyuan-MT-Chimera-7B significantly outperform all translation-specific models of comparable parameter size and most of the SOTA large models, particularly on the task of translation between Mandarin and minority languages as well as dialects. In the WMT2025 shared task (General Machine Translation), our models demonstrate state-of-the-art performance, ranking first in 30 out of 31 language pairs. This result highlights the robustness of our models across a diverse linguistic spectrum, encompassing high-resource languages such as Chinese, English, and Japanese, as well as low-resource languages including Czech, Marathi, Estonian, and Icelandic.

<p align="center">
 <img src="https://dscache.tencent-cloud.cn/upload/uploader/hunyuan-64b418fd052c033b228e04bc77bbc4b54fd7f5bc.png" width="400"/> <br>
</p><p></p>


<p align="center">
    🤗&nbsp;<a href="https://huggingface.co/collections/tencent/hunyuan-mt-68b42f76d473f82798882597"><b>Hugging Face</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    <img src="https://avatars.githubusercontent.com/u/109945100?s=200&v=4" width="16"/>&nbsp;<a href="https://modelscope.cn/collections/Hunyuan-MT-2ca6b8e1b4934f"><b>ModelScope</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
</p>

<p align="center">
    🖥️&nbsp;<a href="https://hunyuan.tencent.com" style="color: red;"><b>Official Website</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    🕹️&nbsp;<a href="https://hunyuan.tencent.com/chat/HunyuanDefault?from=modelSquare&modelId=hunyuan-mt-7b"><b>Demo</b></a>&nbsp;&nbsp;&nbsp;&nbsp;
</p>

<p align="center">
    <a href="https://github.com/Tencent-Hunyuan/Hunyuan-MT"><b>GITHUB</b></a>&nbsp;&nbsp;|&nbsp;&nbsp;
    <a href="https://www.arxiv.org/pdf/2509.05209"><b>Technical Report</b> </a>
</p>


## Model Introduction

The Hunyuan-MT comprises a translation model, Hunyuan-MT-7B, and an ensemble model, Hunyuan-MT-Chimera. The translation model is used to translate source text into the target language, while the ensemble model integrates multiple translation outputs to produce a higher-quality result. It primarily supports mutual translation among 33 languages, including five ethnic minority languages in China.

## Key Features and Advantages

- In the WMT25 competition, the model achieved first place in 30 out of the 31 language categories it participated in.
- Hunyuan-MT-7B achieves industry-leading performance among models of comparable scale
- Hunyuan-MT-Chimera-7B is the industry’s first open-source translation ensemble model, elevating translation quality to a new level
- A comprehensive training framework for translation models has been proposed, spanning from pretrain → continue pretraining (CPT) → supervised fine-tuning (SFT) → translation rl → ensemble rl, achieving state-of-the-art (SOTA) results for models of similar size

## Related News
* 2025.9.1 We have open-sourced  **Hunyuan-MT-7B** , **Hunyuan-MT-Chimera-7B** on Hugging Face.
<br>


## Performance

<div align='center'>
<img src="imgs/overall_performance.png" width = "80%" />
</div>
You can refer to our technical report for more experimental results and analysis.

<a href="https://www.arxiv.org/pdf/2509.05209"><b>Technical Report</b> </a>

&nbsp;

## Model Links
| Model Name  | Description | Download |
| ----------- | ----------- |-----------
| Hunyuan-MT-7B  | Hunyuan 7B translation model |🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-7B)|
| Hunyuan-MT-7B-fp8 | Hunyuan 7B translation model,fp8 quant    | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-7B-fp8)|
| Hunyuan-MT-Chimera | Hunyuan 7B translation ensemble model    | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-Chimera-7B)|
| Hunyuan-MT-Chimera-fp8 | Hunyuan 7B translation ensemble model,fp8 quant     | 🤗 [Model](https://huggingface.co/tencent/Hunyuan-MT-Chimera-7B-fp8)|

## Prompts

### Prompt Template for ZH<=>XX Translation.
```
把下面的文本翻译成<target_language>,不要额外解释。

<source_text>
```


### Prompt Template for XX<=>XX Translation, excluding ZH<=>XX.
```
Translate the following segment into <target_language>, without additional explanation.

<source_text>
```

### Prompt Template for Hunyuan-MT-Chimera-7B

```
Analyze the following multiple <target_language> translations of the <source_language> segment surrounded in triple backticks and generate a single refined <target_language> translation. Only output the refined translation, do not explain.

The <source_language> segment:
```<source_text>```

The multiple `<target_language>` translations:
1. ```<translated_text1>```
2. ```<translated_text2>```
3. ```<translated_text3>```
4. ```<translated_text4>```
5. ```<translated_text5>```
6. ```<translated_text6>```
```

&nbsp;

### Use with transformers
First, please install transformers, recommends v4.56.0
```SHELL
pip install transformers==4.56.0
```

*!!! If you want to load fp8 model with transformers, you need to change the name"ignored_layers" in config.json to "ignore" and upgrade the compressed-tensors to compressed-tensors-0.11.0.*

The following code snippet shows how to use the transformers library to load and apply the model.

we use tencent/Hunyuan-MT-7B for example

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import os

model_name_or_path = "tencent/Hunyuan-MT-7B"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto")  # You may want to use bfloat16 and/or move to GPU here
messages = [
    {"role": "user", "content": "Translate the following segment into Chinese, without additional explanation.

It’s on the house."},
]
tokenized_chat = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=False,
    return_tensors="pt"
)

outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=2048)
output_text = tokenizer.decode(outputs[0])
```

We recommend using the following set of parameters for inference. Note that our model does not have the default system_prompt.

```json
{
  "top_k": 20,
  "top_p": 0.6,
  "repetition_penalty": 1.05,
  "temperature": 0.7
}
```

&nbsp;

Supported languages:
| Languages         | Abbr.   | Chinese Names   |
|-------------------|---------|-----------------|
| Chinese           | zh      | 中文            |
| English           | en      | 英语            |
| French            | fr      | 法语            |
| Portuguese        | pt      | 葡萄牙语        |
| Spanish           | es      | 西班牙语        |
| Japanese          | ja      | 日语            |
| Turkish           | tr      | 土耳其语        |
| Russian           | ru      | 俄语            |
| Arabic            | ar      | 阿拉伯语        |
| Korean            | ko      | 韩语            |
| Thai              | th      | 泰语            |
| Italian           | it      | 意大利语        |
| German            | de      | 德语            |
| Vietnamese        | vi      | 越南语          |
| Malay             | ms      | 马来语          |
| Indonesian        | id      | 印尼语          |
| Filipino          | tl      | 菲律宾语        |
| Hindi             | hi      | 印地语          |
| Traditional Chinese | zh-Hant| 繁体中文        |
| Polish            | pl      | 波兰语          |
| Czech             | cs      | 捷克语          |
| Dutch             | nl      | 荷兰语          |
| Khmer             | km      | 高棉语          |
| Burmese           | my      | 缅甸语          |
| Persian           | fa      | 波斯语          |
| Gujarati          | gu      | 古吉拉特语      |
| Urdu              | ur      | 乌尔都语        |
| Telugu            | te      | 泰卢固语        |
| Marathi           | mr      | 马拉地语        |
| Hebrew            | he      | 希伯来语        |
| Bengali           | bn      | 孟加拉语        |
| Tamil             | ta      | 泰米尔语        |
| Ukrainian         | uk      | 乌克兰语        |
| Tibetan           | bo      | 藏语            |
| Kazakh            | kk      | 哈萨克语        |
| Mongolian         | mn      | 蒙古语          |
| Uyghur            | ug      | 维吾尔语        |
| Cantonese         | yue     | 粤语            |


### Training Data Format

If you need to fine-tune our Instruct model, we recommend processing the data into the following format.

```python

messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Why is seawater salty?" },
    {"role": "assistant", "content": "Seawater is primarily saline due to dissolved salts and minerals. These substances come from the chemical materials in rocks and soil on the Earth's surface, which are carried into the ocean over time. When seawater evaporates, the water vapor leaves, but the salts and minerals remain, making the seawater saltier. Therefore, the salinity of seawater is determined by the amount of salts and minerals it contains."}
]

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("your_tokenizer_path", trust_remote_code=True)
train_ids = tokenizer.apply_chat_template(messages)
```

&nbsp;

### Train with LLaMA-Factory

In the following chapter, we will introduce how to use `LLaMA-Factory` to fine-tune the `Hunyuan` model.

#### Prerequisites

Verify installation of the following dependencies:
- **LLaMA-Factory**: Follow [official installation guide](https://github.com/hiyouga/LLaMA-Factory)
- **DeepSpeed** (optional): Follow [official installation guide](https://github.com/deepspeedai/DeepSpeed#installation)
- **Transformer Library**: Use the companion branch (Hunyuan-submitted code is pending review)
    ```
    pip install git+https://github.com/huggingface/transformers@4970b23cedaf745f963779b4eae68da281e8c6ca
    ```

#### Data preparation

We need to prepare a custom dataset:
1. Organize your data in `json` format and place it in the `data` directory in `LLaMA-Factory`. The current implementation uses the `sharegpt` dataset format, which requires the following structure:
```
[
  {
    "messages": [
      {
        "role": "system",
        "content": "System prompt (optional)"
      },
      {
        "role": "user",
        "content": "Human instruction"
      },
      {
        "role": "assistant",
        "content": "Model response"
      }
    ]
  }
]
```
Refer to the [Data Format](#training-data-format) section mentioned earlier for details.

2. Define your dataset in the data/dataset_info.json file using the following format:
```
"dataset_name": {
  "file_name": "dataset.json",
  "formatting": "sharegpt",
  "columns": {
    "messages": "messages"
  },
  "tags": {
    "role_tag": "role",
    "content_tag": "content",
    "user_tag": "user",
    "assistant_tag": "assistant",
    "system_tag": "system"
  }
}
```

#### Training execution

1. Copy all files from the `llama_factory_support/example_configs` directory to the `example/hunyuan` directory in `LLaMA-Factory`.
2. Modify the model path and dataset name in the configuration file `hunyuan_full.yaml`. Adjust other configurations as needed:
```
### model
model_name_or_path: [!!!add the model path here!!!]

### dataset
dataset: [!!!add the dataset name here!!!]
```
3. Execute training commands:
    *​​Single-node training​​
    Note: Set the environment variable DISABLE_VERSION_CHECK to 1 to avoid version conflicts.
    ```
    export DISABLE_VERSION_CHECK=1
    llamafactory-cli train examples/hunyuan/hunyuan_full.yaml
    ```
    *Multi-node training​​
    Execute the following command on each node. Configure NNODES, NODE_RANK, MASTER_ADDR, and MASTER_PORT according to your environment:
    ```
    export DISABLE_VERSION_CHECK=1
    FORCE_TORCHRUN=1 NNODES=${NNODES} NODE_RANK=${NODE_RANK} MASTER_ADDR=${MASTER_ADDR} MASTER_PORT=${MASTER_PORT} \
    llamafactory-cli train examples/hunyuan/hunyuan_full.yaml
    ```

&nbsp;


## Quantization Compression
We used our own [AngelSlim](https://github.com/tencent/AngelSlim) compression tool to produce FP8 and INT4 quantization models. `AngelSlim` is a toolset dedicated to creating a more user-friendly, comprehensive and efficient model compression solution.

### FP8 Quantization
We use FP8-static quantization, FP8 quantization adopts 8-bit floating point format, through a small amount of calibration data (without training) to pre-determine the quantization scale, the model weights and activation values will be converted to FP8 format, to improve the inference efficiency and reduce the deployment threshold. We you can use AngelSlim quantization, you can also directly download our quantization completed open source model to use [AngelSlim](https://huggingface.co/AngelSlim).


## Deployment

For deployment, you can use frameworks such as **TensorRT-LLM**, **vLLM**, or **SGLang** to serve the model and create an OpenAI-compatible API endpoint.

image: https://hub.docker.com/r/hunyuaninfer/hunyuan-7B/tags


### TensorRT-LLM

#### Docker Image

We provide a pre-built Docker image based on the latest version of TensorRT-LLM.

We use tencent/Hunyuan-7B-Instruct for example
- To get started:

```
docker pull docker.cnb.cool/tencent/hunyuan/hunyuan-7b:hunyuan-7b-trtllm
```
```
docker run --privileged --user root --name hunyuanLLM_infer --rm -it --ipc=host --ulimit memlock=-1 --ulimit stack=67108864 --gpus=all hunyuaninfer/hunyuan-7b:hunyuan-7b-trtllm
```

- Prepare Configuration file:

```
cat >/path/to/extra-llm-api-config.yml <<EOF
use_cuda_graph: true
cuda_graph_padding_enabled: true
cuda_graph_batch_sizes:
- 1
- 2
- 4
- 8
- 16
- 32
print_iter_log: true
EOF
```


- Start the API server:


```
trtllm-serve \
  /path/to/HunYuan-7b \
  --host localhost \
  --port 8000 \
  --backend pytorch \
  --max_batch_size 32 \
  --max_num_tokens 16384 \
  --tp_size 2 \
  --kv_cache_free_gpu_memory_fraction 0.6 \
  --trust_remote_code \
  --extra_llm_api_options /path/to/extra-llm-api-config.yml
```


### vllm

#### Start
Please use vLLM version v0.10.0 or higher for inference.

First, please install transformers. We will merge it into the main branch later.
```SHELL
pip install git+https://github.com/huggingface/transformers@4970b23cedaf745f963779b4eae68da281e8c6ca
```

We use tencent/Hunyuan-7B-Instruct for example
- Download Model file:
  - Huggingface:  will download automicly by vllm.
  - ModelScope: `modelscope download --model Tencent-Hunyuan/Hunyuan-7B-Instruct`

- model download by huggingface:
```shell
export MODEL_PATH=tencent/Hunyuan-7B-Instruct
```

- model downloaded by modelscope:
```shell
export MODEL_PATH=/root/.cache/modelscope/hub/models/Tencent-Hunyuan/Hunyuan-7B-Instruct/
```

- Start the API server:

```shell
python3 -m vllm.entrypoints.openai.api_server \
    --host 0.0.0.0 \
    --port 8000 \
    --trust-remote-code \
    --model ${MODEL_PATH} \
    --tensor-parallel-size 1 \
    --dtype bfloat16 \
    --quantization experts_int8 \
    --served-model-name hunyuan \
    2>&1 | tee log_server.txt
```
- After running service script successfully, run the request script
```shell
curl http://0.0.0.0:8000/v1/chat/completions -H 'Content-Type: application/json' -d '{
"model": "hunyuan",
"messages": [
    {
        "role": "system",
        "content": [{"type": "text", "text": "You are a helpful assistant."}]
    },
    {
        "role": "user",
        "content": [{"type": "text", "text": "请按面积大小对四大洋进行排序,并给出面积最小的洋是哪一个?直接输出结果。"}]
    }
],
"max_tokens": 2048,
"temperature":0.7,
"top_p": 0.6,
"top_k": 20,
"repetition_penalty": 1.05,
"stop_token_ids": [127960]
}'
```
#### Quantitative model deployment
This section describes the process of deploying a post-quantization model using vLLM.

Default server in BF16.

##### Int8 quantitative model deployment
Deploying the Int8-weight-only version of the HunYuan-7B model only requires setting the environment variables

Next we start the Int8 service. Run:
```shell
python3 -m vllm.entrypoints.openai.api_server \
    --host 0.0.0.0 \
    --port 8000 \
    --trust-remote-code \
    --model ${MODEL_PATH} \
    --tensor-parallel-size 1 \
    --dtype bfloat16 \
    --served-model-name hunyuan \
    --quantization experts_int8 \
    2>&1 | tee log_server.txt
```


##### Int4 quantitative model deployment
Deploying the Int4-weight-only version of the HunYuan-7B model only requires setting the environment variables , using the GPTQ method
```shell
export MODEL_PATH=PATH_TO_INT4_MODEL
```
Next we start the Int4 service. Run
```shell
python3 -m vllm.entrypoints.openai.api_server \
    --host 0.0.0.0 \
    --port 8000 \
    --trust-remote-code \
    --model ${MODEL_PATH} \
    --tensor-parallel-size 1 \
    --dtype bfloat16 \
    --served-model-name hunyuan \
    --quantization gptq_marlin \
    2>&1 | tee log_server.txt
```

##### FP8 quantitative model deployment
Deploying the W8A8C8 version of the HunYuan-7B model only requires setting the environment variables


Next we start the FP8 service. Run
```shell
python3 -m vllm.entrypoints.openai.api_server \
    --host 0.0.0.0 \
    --port 8000 \
    --trust-remote-code \
    --model ${MODEL_PATH} \
    --tensor-parallel-size 1 \
    --dtype bfloat16 \
    --served-model-name hunyuan \
    --kv-cache-dtype fp8 \
    2>&1 | tee log_server.txt
```




### SGLang

#### Docker Image

We also provide a pre-built Docker image based on the latest version of SGLang.

We use tencent/Hunyuan-7B-Instruct for example

To get started:

- Pull the Docker image

```
docker pull lmsysorg/sglang:latest
```

- Start the API server:

```
docker run --entrypoint="python3" --gpus all \
    --shm-size 32g \
    -p 30000:30000 \
    --ulimit nproc=10000 \
    --privileged \
    --ipc=host \
     lmsysorg/sglang:latest \
    -m sglang.launch_server --model-path hunyuan/huanyuan_7B --tp 4 --trust-remote-code --host 0.0.0.0 --port 30000
```

Citing Hunyuan-MT:

```bibtex
@misc{hunyuan_mt,
      title={Hunyuan-MT Technical Report}, 
      author={Mao Zheng and Zheng Li and Bingxin Qu and Mingyang Song and Yang Du and Mingrui Sun and Di Wang},
      year={2025},
      eprint={2509.05209},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2509.05209}, 
}
```

## Contact Us

If you would like to leave a message for our R&D and product teams, Welcome to contact our open-source team . You can also contact us via email (hunyuan[email protected]).