|  | import os | 
					
						
						|  | import json | 
					
						
						|  | from typing import Any, Dict, Optional | 
					
						
						|  | from diffusers.models import UNet2DConditionModel | 
					
						
						|  |  | 
					
						
						|  | import numpy | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | import torch.distributed | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from einops import rearrange | 
					
						
						|  | from typing import Any, Callable, Dict, List, Optional, Union, Tuple | 
					
						
						|  |  | 
					
						
						|  | import diffusers | 
					
						
						|  | from diffusers import ( | 
					
						
						|  | AutoencoderKL, | 
					
						
						|  | DDPMScheduler, | 
					
						
						|  | DiffusionPipeline, | 
					
						
						|  | EulerAncestralDiscreteScheduler, | 
					
						
						|  | UNet2DConditionModel, | 
					
						
						|  | ImagePipelineOutput | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.image_processor import VaeImageProcessor | 
					
						
						|  | from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0 | 
					
						
						|  | from diffusers.utils.import_utils import is_xformers_available | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from diffusers.utils import deprecate | 
					
						
						|  |  | 
					
						
						|  | from diffusers.models.transformers.transformer_2d import BasicTransformerBlock | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): | 
					
						
						|  |  | 
					
						
						|  | if hidden_states.shape[chunk_dim] % chunk_size != 0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | num_chunks = hidden_states.shape[chunk_dim] // chunk_size | 
					
						
						|  | ff_output = torch.cat( | 
					
						
						|  | [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], | 
					
						
						|  | dim=chunk_dim, | 
					
						
						|  | ) | 
					
						
						|  | return ff_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Basic2p5DTransformerBlock(torch.nn.Module): | 
					
						
						|  | def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ma=True, use_ra=True) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.transformer = transformer | 
					
						
						|  | self.layer_name = layer_name | 
					
						
						|  | self.use_ma = use_ma | 
					
						
						|  | self.use_ra = use_ra | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.use_ma: | 
					
						
						|  | self.attn_multiview = Attention( | 
					
						
						|  | query_dim=self.dim, | 
					
						
						|  | heads=self.num_attention_heads, | 
					
						
						|  | dim_head=self.attention_head_dim, | 
					
						
						|  | dropout=self.dropout, | 
					
						
						|  | bias=self.attention_bias, | 
					
						
						|  | cross_attention_dim=None, | 
					
						
						|  | upcast_attention=self.attn1.upcast_attention, | 
					
						
						|  | out_bias=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.use_ra: | 
					
						
						|  | self.attn_refview = Attention( | 
					
						
						|  | query_dim=self.dim, | 
					
						
						|  | heads=self.num_attention_heads, | 
					
						
						|  | dim_head=self.attention_head_dim, | 
					
						
						|  | dropout=self.dropout, | 
					
						
						|  | bias=self.attention_bias, | 
					
						
						|  | cross_attention_dim=None, | 
					
						
						|  | upcast_attention=self.attn1.upcast_attention, | 
					
						
						|  | out_bias=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def __getattr__(self, name: str): | 
					
						
						|  | try: | 
					
						
						|  | return super().__getattr__(name) | 
					
						
						|  | except AttributeError: | 
					
						
						|  | return getattr(self.transformer, name) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_hidden_states: Optional[torch.Tensor] = None, | 
					
						
						|  | encoder_attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | timestep: Optional[torch.LongTensor] = None, | 
					
						
						|  | cross_attention_kwargs: Dict[str, Any] = None, | 
					
						
						|  | class_labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | 
					
						
						|  | ) -> torch.Tensor: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batch_size = hidden_states.shape[0] | 
					
						
						|  |  | 
					
						
						|  | cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | 
					
						
						|  | num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1) | 
					
						
						|  | mode = cross_attention_kwargs.pop('mode', None) | 
					
						
						|  | mva_scale = cross_attention_kwargs.pop('mva_scale', 1.0) | 
					
						
						|  | ref_scale = cross_attention_kwargs.pop('ref_scale', 1.0) | 
					
						
						|  | condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.norm_type == "ada_norm": | 
					
						
						|  | norm_hidden_states = self.norm1(hidden_states, timestep) | 
					
						
						|  | elif self.norm_type == "ada_norm_zero": | 
					
						
						|  | norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | 
					
						
						|  | hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | 
					
						
						|  | ) | 
					
						
						|  | elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]: | 
					
						
						|  | norm_hidden_states = self.norm1(hidden_states) | 
					
						
						|  | elif self.norm_type == "ada_norm_continuous": | 
					
						
						|  | norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) | 
					
						
						|  | elif self.norm_type == "ada_norm_single": | 
					
						
						|  | shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | 
					
						
						|  | self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | 
					
						
						|  | ).chunk(6, dim=1) | 
					
						
						|  | norm_hidden_states = self.norm1(hidden_states) | 
					
						
						|  | norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("Incorrect norm used") | 
					
						
						|  |  | 
					
						
						|  | if self.pos_embed is not None: | 
					
						
						|  | norm_hidden_states = self.pos_embed(norm_hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | 
					
						
						|  | gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.attn1( | 
					
						
						|  | norm_hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | **cross_attention_kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.norm_type == "ada_norm_zero": | 
					
						
						|  | attn_output = gate_msa.unsqueeze(1) * attn_output | 
					
						
						|  | elif self.norm_type == "ada_norm_single": | 
					
						
						|  | attn_output = gate_msa * attn_output | 
					
						
						|  |  | 
					
						
						|  | hidden_states = attn_output + hidden_states | 
					
						
						|  | if hidden_states.ndim == 4: | 
					
						
						|  | hidden_states = hidden_states.squeeze(1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if 'w' in mode: | 
					
						
						|  | condition_embed_dict[self.layer_name] = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) | 
					
						
						|  |  | 
					
						
						|  | if 'r' in mode and self.use_ra: | 
					
						
						|  | condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1,num_in_batch,1,1) | 
					
						
						|  | condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c') | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.attn_refview( | 
					
						
						|  | norm_hidden_states, | 
					
						
						|  | encoder_hidden_states=condition_embed, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | **cross_attention_kwargs | 
					
						
						|  | ) | 
					
						
						|  | ref_scale_timing = ref_scale | 
					
						
						|  | if isinstance(ref_scale, torch.Tensor): | 
					
						
						|  | ref_scale_timing = ref_scale.unsqueeze(1).repeat(1, num_in_batch).view(-1) | 
					
						
						|  | for _ in range(attn_output.ndim - 1): | 
					
						
						|  | ref_scale_timing = ref_scale_timing.unsqueeze(-1) | 
					
						
						|  | hidden_states = ref_scale_timing * attn_output + hidden_states | 
					
						
						|  | if hidden_states.ndim == 4: | 
					
						
						|  | hidden_states = hidden_states.squeeze(1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if num_in_batch > 1 and self.use_ma: | 
					
						
						|  | multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.attn_multiview( | 
					
						
						|  | multivew_hidden_states, | 
					
						
						|  | encoder_hidden_states=multivew_hidden_states, | 
					
						
						|  | **cross_attention_kwargs | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = mva_scale * attn_output + hidden_states | 
					
						
						|  | if hidden_states.ndim == 4: | 
					
						
						|  | hidden_states = hidden_states.squeeze(1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if gligen_kwargs is not None: | 
					
						
						|  | hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.attn2 is not None: | 
					
						
						|  | if self.norm_type == "ada_norm": | 
					
						
						|  | norm_hidden_states = self.norm2(hidden_states, timestep) | 
					
						
						|  | elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]: | 
					
						
						|  | norm_hidden_states = self.norm2(hidden_states) | 
					
						
						|  | elif self.norm_type == "ada_norm_single": | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | norm_hidden_states = hidden_states | 
					
						
						|  | elif self.norm_type == "ada_norm_continuous": | 
					
						
						|  | norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("Incorrect norm") | 
					
						
						|  |  | 
					
						
						|  | if self.pos_embed is not None and self.norm_type != "ada_norm_single": | 
					
						
						|  | norm_hidden_states = self.pos_embed(norm_hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.attn2( | 
					
						
						|  | norm_hidden_states, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | attention_mask=encoder_attention_mask, | 
					
						
						|  | **cross_attention_kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = attn_output + hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.norm_type == "ada_norm_continuous": | 
					
						
						|  | norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) | 
					
						
						|  | elif not self.norm_type == "ada_norm_single": | 
					
						
						|  | norm_hidden_states = self.norm3(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if self.norm_type == "ada_norm_zero": | 
					
						
						|  | norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | 
					
						
						|  |  | 
					
						
						|  | if self.norm_type == "ada_norm_single": | 
					
						
						|  | norm_hidden_states = self.norm2(hidden_states) | 
					
						
						|  | norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | 
					
						
						|  |  | 
					
						
						|  | if self._chunk_size is not None: | 
					
						
						|  |  | 
					
						
						|  | ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) | 
					
						
						|  | else: | 
					
						
						|  | ff_output = self.ff(norm_hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if self.norm_type == "ada_norm_zero": | 
					
						
						|  | ff_output = gate_mlp.unsqueeze(1) * ff_output | 
					
						
						|  | elif self.norm_type == "ada_norm_single": | 
					
						
						|  | ff_output = gate_mlp * ff_output | 
					
						
						|  |  | 
					
						
						|  | hidden_states = ff_output + hidden_states | 
					
						
						|  | if hidden_states.ndim == 4: | 
					
						
						|  | hidden_states = hidden_states.squeeze(1) | 
					
						
						|  |  | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  | import copy | 
					
						
						|  | class UNet2p5DConditionModel(torch.nn.Module): | 
					
						
						|  | def __init__(self, unet: UNet2DConditionModel) -> None: | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.unet = unet | 
					
						
						|  |  | 
					
						
						|  | self.use_ma  = True | 
					
						
						|  | self.use_ra  = True | 
					
						
						|  | self.use_camera_embedding = True | 
					
						
						|  | self.use_dual_stream = True | 
					
						
						|  |  | 
					
						
						|  | if self.use_dual_stream: | 
					
						
						|  | self.unet_dual = copy.deepcopy(unet) | 
					
						
						|  | self.init_attention(self.unet_dual) | 
					
						
						|  | self.init_attention(self.unet, use_ma=self.use_ma, use_ra=self.use_ra) | 
					
						
						|  | self.init_condition() | 
					
						
						|  | self.init_camera_embedding() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def from_pretrained(pretrained_model_name_or_path, **kwargs): | 
					
						
						|  | torch_dtype = kwargs.pop('torch_dtype', torch.float32) | 
					
						
						|  | config_path = os.path.join(pretrained_model_name_or_path, 'config.json') | 
					
						
						|  | unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin') | 
					
						
						|  | with open(config_path, 'r', encoding='utf-8') as file: | 
					
						
						|  | config = json.load(file) | 
					
						
						|  | unet = UNet2DConditionModel(**config) | 
					
						
						|  | unet = UNet2p5DConditionModel(unet) | 
					
						
						|  | unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True) | 
					
						
						|  | unet.load_state_dict(unet_ckpt, strict=True) | 
					
						
						|  | unet = unet.to(torch_dtype) | 
					
						
						|  | return unet | 
					
						
						|  |  | 
					
						
						|  | def init_condition(self): | 
					
						
						|  | self.unet.conv_in = torch.nn.Conv2d( | 
					
						
						|  | 12, | 
					
						
						|  | self.unet.conv_in.out_channels, | 
					
						
						|  | kernel_size=self.unet.conv_in.kernel_size, | 
					
						
						|  | stride=self.unet.conv_in.stride, | 
					
						
						|  | padding=self.unet.conv_in.padding, | 
					
						
						|  | dilation=self.unet.conv_in.dilation, | 
					
						
						|  | groups=self.unet.conv_in.groups, | 
					
						
						|  | bias=self.unet.conv_in.bias is not None) | 
					
						
						|  | self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1,77,1024)) | 
					
						
						|  | self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1,77,1024)) | 
					
						
						|  |  | 
					
						
						|  | def init_camera_embedding(self): | 
					
						
						|  |  | 
					
						
						|  | self.max_num_ref_image = 5 | 
					
						
						|  | self.max_num_gen_image = 12*3+4*2 | 
					
						
						|  |  | 
					
						
						|  | if self.use_camera_embedding: | 
					
						
						|  | time_embed_dim = 1280 | 
					
						
						|  | self.unet.class_embedding = nn.Embedding(self.max_num_ref_image+self.max_num_gen_image, time_embed_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def init_attention(self, unet, use_ma=False, use_ra=False): | 
					
						
						|  |  | 
					
						
						|  | for down_block_i, down_block in enumerate(unet.down_blocks): | 
					
						
						|  | if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention: | 
					
						
						|  | for attn_i, attn in enumerate(down_block.attentions): | 
					
						
						|  | for transformer_i, transformer in enumerate(attn.transformer_blocks): | 
					
						
						|  | if isinstance(transformer, BasicTransformerBlock): | 
					
						
						|  | attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'down_{down_block_i}_{attn_i}_{transformer_i}', use_ma, use_ra) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention: | 
					
						
						|  | for attn_i, attn in enumerate(unet.mid_block.attentions): | 
					
						
						|  | for transformer_i, transformer in enumerate(attn.transformer_blocks): | 
					
						
						|  | if isinstance(transformer, BasicTransformerBlock): | 
					
						
						|  | attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'mid_{attn_i}_{transformer_i}', use_ma, use_ra) | 
					
						
						|  |  | 
					
						
						|  | for up_block_i, up_block in enumerate(unet.up_blocks): | 
					
						
						|  | if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention: | 
					
						
						|  | for attn_i, attn in enumerate(up_block.attentions): | 
					
						
						|  | for transformer_i, transformer in enumerate(attn.transformer_blocks): | 
					
						
						|  | if isinstance(transformer, BasicTransformerBlock): | 
					
						
						|  | attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'up_{up_block_i}_{attn_i}_{transformer_i}', use_ma, use_ra) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __getattr__(self, name: str): | 
					
						
						|  | try: | 
					
						
						|  | return super().__getattr__(name) | 
					
						
						|  | except AttributeError: | 
					
						
						|  | return getattr(self.unet, name) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, sample, timestep, encoder_hidden_states, | 
					
						
						|  | *args, down_intrablock_additional_residuals=None, | 
					
						
						|  | down_block_res_samples=None, mid_block_res_sample=None, | 
					
						
						|  | **cached_condition, | 
					
						
						|  | ): | 
					
						
						|  | B, N_gen, _, H, W = sample.shape | 
					
						
						|  | assert H == W | 
					
						
						|  |  | 
					
						
						|  | if self.use_camera_embedding: | 
					
						
						|  | camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image | 
					
						
						|  | camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)') | 
					
						
						|  | else: | 
					
						
						|  | camera_info_gen = None | 
					
						
						|  |  | 
					
						
						|  | sample = [sample] | 
					
						
						|  | if 'normal_imgs' in cached_condition: | 
					
						
						|  | sample.append(cached_condition["normal_imgs"]) | 
					
						
						|  | if 'position_imgs' in cached_condition: | 
					
						
						|  | sample.append(cached_condition["position_imgs"]) | 
					
						
						|  | sample = torch.cat(sample, dim=2) | 
					
						
						|  |  | 
					
						
						|  | sample = rearrange(sample, 'b n c h w -> (b n) c h w') | 
					
						
						|  |  | 
					
						
						|  | encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1) | 
					
						
						|  | encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c') | 
					
						
						|  |  | 
					
						
						|  | if self.use_ra: | 
					
						
						|  | if 'condition_embed_dict' in cached_condition: | 
					
						
						|  | condition_embed_dict = cached_condition['condition_embed_dict'] | 
					
						
						|  | else: | 
					
						
						|  | condition_embed_dict = {} | 
					
						
						|  | ref_latents = cached_condition['ref_latents'] | 
					
						
						|  | N_ref = ref_latents.shape[1] | 
					
						
						|  | if self.use_camera_embedding: | 
					
						
						|  | camera_info_ref = cached_condition['camera_info_ref'] | 
					
						
						|  | camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)') | 
					
						
						|  | else: | 
					
						
						|  | camera_info_ref = None | 
					
						
						|  |  | 
					
						
						|  | ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w') | 
					
						
						|  |  | 
					
						
						|  | encoder_hidden_states_ref = self.unet.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1) | 
					
						
						|  | encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c') | 
					
						
						|  |  | 
					
						
						|  | noisy_ref_latents = ref_latents | 
					
						
						|  | timestep_ref = 0 | 
					
						
						|  |  | 
					
						
						|  | if self.use_dual_stream: | 
					
						
						|  | unet_ref = self.unet_dual | 
					
						
						|  | else: | 
					
						
						|  | unet_ref = self.unet | 
					
						
						|  | unet_ref( | 
					
						
						|  | noisy_ref_latents, timestep_ref, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states_ref, | 
					
						
						|  | class_labels=camera_info_ref, | 
					
						
						|  |  | 
					
						
						|  | return_dict=False, | 
					
						
						|  | cross_attention_kwargs={ | 
					
						
						|  | 'mode':'w', 'num_in_batch':N_ref, | 
					
						
						|  | 'condition_embed_dict':condition_embed_dict}, | 
					
						
						|  | ) | 
					
						
						|  | cached_condition['condition_embed_dict'] = condition_embed_dict | 
					
						
						|  | else: | 
					
						
						|  | condition_embed_dict = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mva_scale = cached_condition.get('mva_scale', 1.0) | 
					
						
						|  | ref_scale = cached_condition.get('ref_scale', 1.0) | 
					
						
						|  |  | 
					
						
						|  | return self.unet( | 
					
						
						|  | sample, timestep, | 
					
						
						|  | encoder_hidden_states_gen, *args, | 
					
						
						|  | class_labels=camera_info_gen, | 
					
						
						|  | down_intrablock_additional_residuals=[ | 
					
						
						|  | sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals | 
					
						
						|  | ] if down_intrablock_additional_residuals is not None else None, | 
					
						
						|  | down_block_additional_residuals=[ | 
					
						
						|  | sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples | 
					
						
						|  | ] if down_block_res_samples is not None else None, | 
					
						
						|  | mid_block_additional_residual=( | 
					
						
						|  | mid_block_res_sample.to(dtype=self.unet.dtype) | 
					
						
						|  | if mid_block_res_sample is not None else None | 
					
						
						|  | ), | 
					
						
						|  | return_dict=False, | 
					
						
						|  | cross_attention_kwargs={ | 
					
						
						|  | 'mode':'r', 'num_in_batch':N_gen, | 
					
						
						|  | 'condition_embed_dict':condition_embed_dict, | 
					
						
						|  | 'mva_scale': mva_scale, | 
					
						
						|  | 'ref_scale': ref_scale, | 
					
						
						|  | }, | 
					
						
						|  | ) |