Upload tokenization_hy.py with huggingface_hub
Browse files- tokenization_hy.py +354 -0
tokenization_hy.py
ADDED
|
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The Tencent Inc. HunYuan Team.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
import os
|
| 16 |
+
import base64
|
| 17 |
+
import logging
|
| 18 |
+
import tiktoken
|
| 19 |
+
import unicodedata
|
| 20 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
| 21 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
VOCAB_FILES_NAMES = {"vocab_file": "hy.tiktoken"}
|
| 28 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|""" \
|
| 29 |
+
r"""[^\r\n\p{L}\p{N}]?\p{L}+|""" \
|
| 30 |
+
r"""\p{N}|""" \
|
| 31 |
+
r""" ?[^\s\p{L}\p{N}]+[\r\n]*|""" \
|
| 32 |
+
r"""\s*[\r\n]+|""" \
|
| 33 |
+
r"""\s+(?!\S)|""" \
|
| 34 |
+
r"""\s+"""
|
| 35 |
+
# default eod_token and bod_token of our base model
|
| 36 |
+
ENDOFTEXT = "<|endoftext|>"
|
| 37 |
+
STARTOFTEXT = "<|startoftext|>"
|
| 38 |
+
|
| 39 |
+
# extra flag token for other training
|
| 40 |
+
BOSTOKEN = "<|bos|>"
|
| 41 |
+
EOSTOKEN = "<|eos|>"
|
| 42 |
+
|
| 43 |
+
PADTOKEN = "<|pad|>"
|
| 44 |
+
|
| 45 |
+
# extra special tokens for the tokenizer
|
| 46 |
+
# as the default behavior is changed to allow special tokens in
|
| 47 |
+
# regular texts, the surface forms of special tokens need to be
|
| 48 |
+
# as different as possible to minimize the impact
|
| 49 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(204)))
|
| 50 |
+
|
| 51 |
+
SPECIAL_START_ID = 127957
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
| 55 |
+
dic = {}
|
| 56 |
+
rank = 0
|
| 57 |
+
for i, line in enumerate(open(tiktoken_bpe_file, "rb")):
|
| 58 |
+
if line:
|
| 59 |
+
token, _ = line.split()
|
| 60 |
+
# skip duplicated tokens, this should not happen
|
| 61 |
+
if base64.b64decode(token) in dic:
|
| 62 |
+
raise ValueError(f"!ERROR: duplicated token {token} in your vocab file")
|
| 63 |
+
dic[base64.b64decode(token)] = int(rank)
|
| 64 |
+
rank += 1
|
| 65 |
+
return dic
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
# special tokens for pretrain and finetune models
|
| 69 |
+
SPECIAL_TOKENS = tuple(
|
| 70 |
+
enumerate(
|
| 71 |
+
(
|
| 72 |
+
(
|
| 73 |
+
ENDOFTEXT,
|
| 74 |
+
STARTOFTEXT,
|
| 75 |
+
BOSTOKEN,
|
| 76 |
+
EOSTOKEN,
|
| 77 |
+
PADTOKEN,
|
| 78 |
+
)
|
| 79 |
+
+ EXTRAS
|
| 80 |
+
),
|
| 81 |
+
start=SPECIAL_START_ID,
|
| 82 |
+
)
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class HYTokenizer(PreTrainedTokenizer):
|
| 89 |
+
"""
|
| 90 |
+
HunYuan Tokenizer Initialization. We extend `tiktoken` vocab and
|
| 91 |
+
the default EOD & BOD special tokens are used for base model.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
vocab_file (`str`):
|
| 95 |
+
Path to the vocabulary file.
|
| 96 |
+
|
| 97 |
+
errors (`str`):
|
| 98 |
+
How to handle errors in decoding UTF-8 byte sequences.
|
| 99 |
+
use ignore if you are in streaming inference
|
| 100 |
+
|
| 101 |
+
bod_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""<|startoftext|>""`):
|
| 102 |
+
The beginning of document token that was used for training. can be modified by your task.
|
| 103 |
+
default to be `<|startoftext|>` for released base model.
|
| 104 |
+
|
| 105 |
+
eod_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `""<|endoftext|>""`):
|
| 106 |
+
The end of document token that was used for training. can be modified by your task.
|
| 107 |
+
default to be `<|endoftext|>` for released base model.
|
| 108 |
+
|
| 109 |
+
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `None`):
|
| 110 |
+
The start or sep special token that was used for some training tasks.
|
| 111 |
+
default to be `<|startoftext|>` for released base model.
|
| 112 |
+
It can be set to `<|bos|>` when you training for some other task
|
| 113 |
+
|
| 114 |
+
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `None`):
|
| 115 |
+
The end or sep special token that was used for some training tasks.
|
| 116 |
+
default to be `<|endoftext|>` for released base model.
|
| 117 |
+
It can be set to `<|eos|>` when you training for some other task
|
| 118 |
+
|
| 119 |
+
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
|
| 120 |
+
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
|
| 121 |
+
attention mechanisms or loss computation.
|
| 122 |
+
|
| 123 |
+
special_vocab_file (str, *optional*):
|
| 124 |
+
Customed special extra vocab file, same format with hy.tiktoken.
|
| 125 |
+
**Be careful** to use the extra special vocab, it will may cause the model loading collapse.
|
| 126 |
+
The data line be like:
|
| 127 |
+
`PHxhYmN8Pg== 0`
|
| 128 |
+
the id followed `base64.encode(str)` is unused, we will reset them in case of collision
|
| 129 |
+
|
| 130 |
+
add_bod_token (`bool`, *optional*, defaults to `True`):
|
| 131 |
+
Whether or not to add an `bos_token` at the start of documents.
|
| 132 |
+
This will effect `build_inputs_with_special_tokens` method
|
| 133 |
+
|
| 134 |
+
add_eod_token (`bool`, *optional*, defaults to `False`):
|
| 135 |
+
Whether or not to add an `eos_token` at the end of documents.
|
| 136 |
+
This will effect `build_inputs_with_special_tokens` method
|
| 137 |
+
|
| 138 |
+
"""
|
| 139 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 140 |
+
|
| 141 |
+
def __init__(
|
| 142 |
+
self,
|
| 143 |
+
vocab_file,
|
| 144 |
+
errors="replace",
|
| 145 |
+
bod_token="<|startoftext|>",
|
| 146 |
+
eod_token="<|endoftext|>",
|
| 147 |
+
bos_token="<|startoftext|>",
|
| 148 |
+
eos_token="<|endoftext|>",
|
| 149 |
+
pad_token="<|pad|>",
|
| 150 |
+
add_bod_token=True,
|
| 151 |
+
add_eod_token=True,
|
| 152 |
+
**kwargs,
|
| 153 |
+
):
|
| 154 |
+
super().__init__(**kwargs)
|
| 155 |
+
|
| 156 |
+
self.errors = errors
|
| 157 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
| 158 |
+
self.special_tokens = {
|
| 159 |
+
token: index
|
| 160 |
+
for index, token in SPECIAL_TOKENS
|
| 161 |
+
}
|
| 162 |
+
|
| 163 |
+
enc = tiktoken.Encoding(
|
| 164 |
+
"HunYuan",
|
| 165 |
+
pat_str=PAT_STR,
|
| 166 |
+
mergeable_ranks=self.mergeable_ranks,
|
| 167 |
+
special_tokens=self.special_tokens,
|
| 168 |
+
)
|
| 169 |
+
assert (
|
| 170 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
| 171 |
+
), f"{len(self.mergeable_ranks)} + {len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
| 172 |
+
|
| 173 |
+
self.decoder = {
|
| 174 |
+
v: k for k, v in self.mergeable_ranks.items()
|
| 175 |
+
} # type: dict[int, bytes|str]
|
| 176 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
| 177 |
+
|
| 178 |
+
self.tokenizer = enc
|
| 179 |
+
|
| 180 |
+
self.bod_token, self.bod_id = bod_token, self.special_tokens[bod_token]
|
| 181 |
+
self.eod_token, self.eod_id = eod_token, self.special_tokens[eod_token]
|
| 182 |
+
self.bos_token, self.bos_id = bos_token, self.special_tokens[bos_token]
|
| 183 |
+
self.eos_token, self.eos_id = eos_token, self.special_tokens[eos_token]
|
| 184 |
+
self.pad_token, self.pad_id = pad_token, self.special_tokens[pad_token]
|
| 185 |
+
|
| 186 |
+
self._num_special_token = len(self.special_tokens)
|
| 187 |
+
|
| 188 |
+
self.add_bod_token = add_bod_token
|
| 189 |
+
self.add_eod_token = add_eod_token
|
| 190 |
+
|
| 191 |
+
def __getstate__(self):
|
| 192 |
+
state = self.__dict__.copy()
|
| 193 |
+
del state["tokenizer"]
|
| 194 |
+
return state
|
| 195 |
+
|
| 196 |
+
def __setstate__(self, state):
|
| 197 |
+
self.__dict__.update(state)
|
| 198 |
+
enc = tiktoken.Encoding(
|
| 199 |
+
"HunYuan",
|
| 200 |
+
pat_str=PAT_STR,
|
| 201 |
+
mergeable_ranks=self.mergeable_ranks,
|
| 202 |
+
special_tokens=self.special_tokens,
|
| 203 |
+
)
|
| 204 |
+
self.tokenizer = enc
|
| 205 |
+
|
| 206 |
+
def __len__(self) -> int:
|
| 207 |
+
return self.tokenizer.n_vocab
|
| 208 |
+
|
| 209 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
| 210 |
+
"""Return the vocabulary as a dictionary, without special tokens."""
|
| 211 |
+
return self.mergeable_ranks
|
| 212 |
+
|
| 213 |
+
def convert_tokens_to_ids(
|
| 214 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
| 215 |
+
) -> List[int]:
|
| 216 |
+
ids = []
|
| 217 |
+
if isinstance(tokens, (str, bytes)):
|
| 218 |
+
if tokens in self.special_tokens:
|
| 219 |
+
return self.special_tokens[tokens]
|
| 220 |
+
else:
|
| 221 |
+
return self.mergeable_ranks.get(tokens)
|
| 222 |
+
for token in tokens:
|
| 223 |
+
if token in self.special_tokens:
|
| 224 |
+
ids.append(self.special_tokens[token])
|
| 225 |
+
else:
|
| 226 |
+
ids.append(self.mergeable_ranks.get(token))
|
| 227 |
+
return ids
|
| 228 |
+
|
| 229 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 230 |
+
bod_token_id = [self.bod_id] if self.add_bod_token else []
|
| 231 |
+
eod_token_id = [self.eod_id] if self.add_eod_token else []
|
| 232 |
+
output = bod_token_id + token_ids_0 + eod_token_id
|
| 233 |
+
if token_ids_1 is not None:
|
| 234 |
+
output = output + bod_token_id + token_ids_1 + eod_token_id
|
| 235 |
+
return output
|
| 236 |
+
|
| 237 |
+
def _add_tokens(
|
| 238 |
+
self,
|
| 239 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
| 240 |
+
special_tokens: bool = False,
|
| 241 |
+
) -> List[Tuple[int, str]]:
|
| 242 |
+
"""do not support adding tokens"""
|
| 243 |
+
if not special_tokens and new_tokens:
|
| 244 |
+
raise ValueError("Adding regular tokens is not supported")
|
| 245 |
+
for token in new_tokens:
|
| 246 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
| 247 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
| 248 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
| 249 |
+
return 0
|
| 250 |
+
|
| 251 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
| 252 |
+
"""
|
| 253 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
| 254 |
+
Returns:
|
| 255 |
+
`Tuple(str)`: Paths to the files saved.
|
| 256 |
+
"""
|
| 257 |
+
file_path = os.path.join(save_directory, "hy.tiktoken")
|
| 258 |
+
with open(file_path, "w", encoding="utf8") as w:
|
| 259 |
+
for k, v in self.mergeable_ranks.items():
|
| 260 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
| 261 |
+
w.write(line)
|
| 262 |
+
return (file_path,)
|
| 263 |
+
|
| 264 |
+
def tokenize(
|
| 265 |
+
self,
|
| 266 |
+
text: str,
|
| 267 |
+
allowed_special: Union[Set, str] = "all",
|
| 268 |
+
disallowed_special: Union[Collection, str] = (),
|
| 269 |
+
**kwargs,
|
| 270 |
+
) -> List[Union[bytes, str]]:
|
| 271 |
+
"""
|
| 272 |
+
Converts a string in a sequence of tokens.
|
| 273 |
+
Args:
|
| 274 |
+
text (`str`):
|
| 275 |
+
The sequence to be encoded.
|
| 276 |
+
allowed_special (`Literal["all"]` or `set`):
|
| 277 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
| 278 |
+
Default to "all".
|
| 279 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
| 280 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
| 281 |
+
Default to an empty tuple.
|
| 282 |
+
kwargs (additional keyword arguments, *optional*):
|
| 283 |
+
Will be passed to the underlying model specific encode method.
|
| 284 |
+
Returns:
|
| 285 |
+
`List[bytes|str]`: The list of tokens.
|
| 286 |
+
"""
|
| 287 |
+
tokens = []
|
| 288 |
+
text = unicodedata.normalize("NFC", text)
|
| 289 |
+
|
| 290 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
| 291 |
+
for t in self.tokenizer.encode(
|
| 292 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
| 293 |
+
):
|
| 294 |
+
tokens.append(self.decoder[t])
|
| 295 |
+
return tokens
|
| 296 |
+
|
| 297 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
| 298 |
+
"""
|
| 299 |
+
Converts a sequence of tokens in a single string.
|
| 300 |
+
"""
|
| 301 |
+
text = ""
|
| 302 |
+
temp = b""
|
| 303 |
+
for t in tokens:
|
| 304 |
+
if isinstance(t, str):
|
| 305 |
+
if temp:
|
| 306 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 307 |
+
temp = b""
|
| 308 |
+
text += t
|
| 309 |
+
elif isinstance(t, bytes):
|
| 310 |
+
temp += t
|
| 311 |
+
else:
|
| 312 |
+
raise TypeError("token should only be of type types or str")
|
| 313 |
+
if temp:
|
| 314 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 315 |
+
return text
|
| 316 |
+
|
| 317 |
+
@property
|
| 318 |
+
def vocab_size(self):
|
| 319 |
+
return self.tokenizer.n_vocab
|
| 320 |
+
|
| 321 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
| 322 |
+
"""Converts an id to a token, special tokens included"""
|
| 323 |
+
if index in self.decoder:
|
| 324 |
+
return self.decoder[index]
|
| 325 |
+
raise ValueError("unknown ids")
|
| 326 |
+
|
| 327 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
| 328 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
| 329 |
+
if token in self.special_tokens:
|
| 330 |
+
return self.special_tokens[token]
|
| 331 |
+
if token in self.mergeable_ranks:
|
| 332 |
+
return self.mergeable_ranks[token]
|
| 333 |
+
raise ValueError("unknown token")
|
| 334 |
+
|
| 335 |
+
def _tokenize(self, text: str, **kwargs):
|
| 336 |
+
"""
|
| 337 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
| 338 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
| 339 |
+
Do NOT take care of added tokens.
|
| 340 |
+
"""
|
| 341 |
+
raise NotImplementedError
|
| 342 |
+
|
| 343 |
+
def _decode(
|
| 344 |
+
self,
|
| 345 |
+
token_ids: Union[int, List[int]],
|
| 346 |
+
skip_special_tokens: bool = False,
|
| 347 |
+
errors: str = None,
|
| 348 |
+
**kwargs,
|
| 349 |
+
) -> str:
|
| 350 |
+
if isinstance(token_ids, int):
|
| 351 |
+
token_ids = [token_ids]
|
| 352 |
+
if skip_special_tokens:
|
| 353 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
| 354 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|