--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - openai/gpt-oss-120b --- This tiny model is for debugging. It is randomly initialized with the config adapted from [openai/gpt-oss-120b](https://huggingface.co/openai/gpt-oss-120b). Note: This model used quantized MXFP4 FFN. `pip install -U triton git+https://github.com/triton-lang/triton.git@main#subdirectory=python/triton_kernels` ### Example usage: - vLLM ```bash vllm serve tiny-random/gpt-oss-mxfp4 ``` - Transformers ```python import torch from transformers import pipeline model_id = "tiny-random/gpt-oss-mxfp4" pipe = pipeline( "text-generation", model=model_id, torch_dtype='auto', device_map="cuda", ) messages = [ {"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, ] outputs = pipe( messages, max_new_tokens=16, ) print(outputs[0]["generated_text"][-1]) ``` ### Codes to create this repo: ```python import json import safetensors import torch from huggingface_hub import hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, AutoTokenizer, GenerationConfig, GptOssForCausalLM, pipeline, set_seed, ) source_model_id = "openai/gpt-oss-120b" save_folder = "/tmp/tiny-random/gpt-oss-mxfp4" processor = AutoProcessor.from_pretrained(source_model_id) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r') as f: config_json = json.load(f) config_json.update({ "head_dim": 32, "hidden_size": 32, # required by Mxfp4GptOssExperts codes "intermediate_size": 64, "layer_types": ["sliding_attention", "full_attention"], "num_attention_heads": 2, "num_hidden_layers": 2, "num_key_value_heads": 1, "num_local_experts": 32, "tie_word_embeddings": True, }) quantization_config = config_json['quantization_config'] del config_json['quantization_config'] with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained(save_folder) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config, torch_dtype=torch.bfloat16) torch.set_default_dtype(torch.float32) model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) # mxfp4 state_dict = model.cpu().state_dict() del state_dict['lm_head.weight'] for i in range(len(model.model.layers)): del state_dict[f'model.layers.{i}.mlp.experts.down_proj'] del state_dict[f'model.layers.{i}.mlp.experts.gate_up_proj'] state_dict[f'model.layers.{i}.mlp.experts.down_proj_blocks'] = torch.randint(0, 255, size=( config.num_local_experts, config.hidden_size, config.intermediate_size // 32, 16), dtype=torch.uint8 ) state_dict[f'model.layers.{i}.mlp.experts.down_proj_scales'] = torch.randint(0, 4, size=( config.num_local_experts, config.hidden_size, config.intermediate_size // 32), dtype=torch.uint8 ) state_dict[f'model.layers.{i}.mlp.experts.gate_up_proj_blocks'] = torch.randint(0, 255, size=( config.num_local_experts, 2 * config.intermediate_size, config.hidden_size // 32, 16), dtype=torch.uint8 ) state_dict[f'model.layers.{i}.mlp.experts.gate_up_proj_scales'] = torch.randint(0, 4, size=( config.num_local_experts, 2 * config.intermediate_size, config.hidden_size // 32), dtype=torch.uint8 ) safetensors.torch.save_file(state_dict, f"{save_folder}/model.safetensors") # from unittest.mock import Mock # from transformers.quantizers.auto import AutoHfQuantizer # from transformers.quantizers.quantizer_mxfp4 import Mxfp4HfQuantizer # _get_device_capability = torch.cuda.get_device_capability # torch.cuda.get_device_capability = Mock(return_value=(9, 0)) # set_seed(42) # bf16_state_dict = model.cpu().state_dict() # model = AutoModelForCausalLM.from_pretrained(save_folder, torch_dtype=torch.bfloat16, quantization_config=quantization_config) # for i in range(len(model.model.layers)): # model.model.layers[i].mlp.experts.down_proj_bottom_pad = 0 # model.model.layers[i].mlp.experts.down_proj_right_pad = 0 # hf_quantizer: Mxfp4HfQuantizer = AutoHfQuantizer.from_config(quantization_config) # hf_quantizer.pre_quantized = False # ffn_keys = ['model.layers.0.mlp.experts.down_proj', 'model.layers.0.mlp.experts.gate_up_proj', # 'model.layers.1.mlp.experts.down_proj', 'model.layers.1.mlp.experts.gate_up_proj'] # for key in ffn_keys: # hf_quantizer.create_quantized_param(model, bf16_state_dict[key], key, "cuda", bf16_state_dict) # print('down_proj', model.model.layers[0].mlp.experts.down_proj) # print('down_proj_blocks', model.model.layers[0].mlp.experts.down_proj_blocks) # state_dict = model.state_dict() # del state_dict['lm_head.weight'] # for key in ffn_keys: # del state_dict[key] # for k, v in state_dict.items(): # if str(v.device) == 'meta': # print(k, v.device, v.shape) # safetensors.torch.save_file(state_dict, f"{save_folder}/model.safetensors") with open(f"{save_folder}/config.json", "r", encoding='utf-8') as f: config = json.load(f) config['quantization_config'] = quantization_config with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config, f, indent=2) # torch.cuda.get_device_capability = _get_device_capability ```