File size: 6,976 Bytes
849fafd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
library_name: transformers
pipeline_tag: any-to-any
inference: true
widget:
  - text: Hello!
    example_title: Hello world
    group: Python
---

This tiny model is for debugging. It is randomly initialized with the config adapted from [Qwen/Qwen2.5-Omni-7B](https://huggingface.co/Qwen/Qwen2.5-Omni-7B).

### Example usage:

```python
import soundfile as sf
from qwen_omni_utils import process_mm_info
from transformers import Qwen2_5OmniModel, Qwen2_5OmniProcessor

model_id = "tiny-random/qwen2.5-omni"
# model = Qwen2_5OmniModel.from_pretrained(model_id, torch_dtype="auto", device_map="auto").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
model = Qwen2_5OmniModel.from_pretrained(
    model_id,
    torch_dtype="auto",
    device_map="auto",
    attn_implementation="flash_attention_2",
).eval()
processor = Qwen2_5OmniProcessor.from_pretrained(model_id)

conversation = [
    {
        "role": "system",
        "content": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech.",
    },
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Hi, can you tell me a joke?"},
            {"type": "audio", "audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Audio/glass-breaking-151256.mp3"},
            {"type": "video", "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/draw.mp4"},
            {"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"},
        ],
    },
]

# Preparation for inference
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios, images, videos = process_mm_info(conversation, use_audio_in_video=True)
print('Audios:', audios)
print('Images:', images)
print('Videos:', videos)
inputs = processor(text=text, audios=audios, images=images, videos=videos, return_tensors="pt", padding=True)
inputs = inputs.to(model.device).to(model.dtype)

# Inference: Generation of the output text and audio
text_ids, audio = model.generate(
    **inputs, use_audio_in_video=True,
    thinker_max_new_tokens=16, talker_max_new_tokens=16,
)

text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(text, '\n' * 3)
sf.write(
    "/tmp/output.wav",
    audio.reshape(-1).detach().cpu().numpy(),
    samplerate=24000,
)
```

### Codes to create this repo:

```python
from pathlib import Path

import torch

from huggingface_hub import hf_hub_download
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    Qwen2_5OmniModel,
    Qwen2_5OmniProcessor,
    pipeline,
    set_seed,
)

source_model_id = "Qwen/Qwen2.5-Omni-7B"
save_folder = "/tmp/tiny-random/qwen2.5-omni"

processor = Qwen2_5OmniProcessor.from_pretrained(
    source_model_id, trust_remote_code=True,
)
processor.save_pretrained(save_folder)

config = AutoConfig.from_pretrained(
    source_model_id, trust_remote_code=True,
)
OUTPUT_DIM = 16
config.talker_config.num_hidden_layers = 1
config.talker_config.hidden_size = 16
config.talker_config.embedding_size = OUTPUT_DIM
config.talker_config.head_dim = 16
config.talker_config.num_attention_heads = 1
config.talker_config.num_key_value_heads = 1
config.talker_config.intermediate_size = 32
config.talker_config.rope_scaling['mrope_section'] = [2, 2, 4]
assert 2 * sum(config.talker_config.rope_scaling['mrope_section']
               ) == config.talker_config.hidden_size / config.talker_config.num_attention_heads

config.thinker_config.audio_config.num_hidden_layers = 1
config.thinker_config.audio_config.encoder_layers = 1
config.thinker_config.audio_config.d_model = 16
config.thinker_config.audio_config.encoder_attention_heads = 1
config.thinker_config.audio_config.encoder_ffn_dim = 32
config.thinker_config.audio_config.output_dim = OUTPUT_DIM

config.thinker_config.text_config.num_hidden_layers = 1
config.thinker_config.text_config.hidden_size = OUTPUT_DIM
config.thinker_config.text_config.intermediate_size = 32
config.thinker_config.text_config.num_attention_heads = 1
config.thinker_config.text_config.num_key_value_heads = 1
config.thinker_config.text_config.rope_scaling['mrope_section'] = [2, 2, 4]
assert 2 * sum(config.thinker_config.text_config.rope_scaling['mrope_section']
               ) == config.thinker_config.text_config.hidden_size / config.thinker_config.text_config.num_attention_heads

config.thinker_config.vision_config.depth = 2
config.thinker_config.vision_config.embed_dim = 16
config.thinker_config.vision_config.hidden_size = 16
config.thinker_config.vision_config.intermediate_size = 32
config.thinker_config.vision_config.out_hidden_size = OUTPUT_DIM
config.thinker_config.vision_config.num_heads = 1
config.thinker_config.vision_config.fullatt_block_indexes = [1]

config.token2wav_config.bigvgan_config.resblock_dilation_sizes = [[1, 3, 5]]
config.token2wav_config.bigvgan_config.resblock_kernel_sizes = [7]
config.token2wav_config.bigvgan_config.upsample_initial_channel = 32
config.token2wav_config.bigvgan_config.upsample_kernel_sizes = [11, 4]
config.token2wav_config.bigvgan_config.upsample_rates = [5, 2]

config.token2wav_config.dit_config.depth = 1
config.token2wav_config.dit_config.num_hidden_layers = 1
config.token2wav_config.dit_config.hidden_size = 16
config.token2wav_config.dit_config.dim = 16
config.token2wav_config.dit_config.emb_dim = 16
config.token2wav_config.dit_config.enc_attention_channels = 16
config.token2wav_config.dit_config.enc_channels = [32, 32, 32]
config.token2wav_config.dit_config.enc_dilations = [1, 3, 4]
config.token2wav_config.dit_config.enc_kernel_sizes = [5, 3, 1]
config.token2wav_config.dit_config.enc_dim = 16
config.token2wav_config.dit_config.enc_emb_dim = 16
config.token2wav_config.dit_config.enc_lin_neurons = 16
config.token2wav_config.dit_config.head_dim = 16
config.token2wav_config.dit_config.num_attention_heads = 1
config.token2wav_config.dit_config.heads = 1
# avoid mismatch in vocab size because this is random model!
config.token2wav_config.dit_config.num_embeds = config.talker_config.vocab_size
print(config)

spk_dict = torch.load(hf_hub_download(source_model_id, 'spk_dict.pt', repo_type='model'))
for _, info in spk_dict.items():
    info['cond'] = info['cond'][:, :config.token2wav_config.dit_config.enc_emb_dim].clone()
torch.save(spk_dict, Path(save_folder, "spk_dict.pt"))

torch.set_default_dtype(torch.bfloat16)
model = Qwen2_5OmniModel(
    config,
)
torch.set_default_dtype(torch.float32)
model.generation_config = GenerationConfig.from_pretrained(
    source_model_id, trust_remote_code=True,
)
set_seed(42)
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        torch.nn.init.normal_(p, 0, 0.5)
        print(name, p.shape, p.dtype)
model.save_pretrained(save_folder)
```