File size: 7,553 Bytes
849fafd ecb05fb 849fafd ecb05fb 849fafd ecb05fb 849fafd ecb05fb 849fafd ecb05fb 849fafd ecb05fb 849fafd ecb05fb 849fafd ecb05fb 849fafd ecb05fb 849fafd a45549b 849fafd a45549b 849fafd ecb05fb 849fafd ecb05fb 849fafd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
---
library_name: transformers
pipeline_tag: any-to-any
inference: true
widget:
- text: Hello!
example_title: Hello world
group: Python
---
This tiny model is for debugging. It is randomly initialized with the config adapted from [Qwen/Qwen2.5-Omni-7B](https://huggingface.co/Qwen/Qwen2.5-Omni-7B).
### Example usage:
```python
import unittest
import torch
import soundfile as sf
from qwen_omni_utils import process_mm_info
from transformers import (
Qwen2_5OmniForConditionalGeneration,
Qwen2_5OmniPreTrainedModel,
Qwen2_5OmniProcessor,
)
model_id = "tiny-random/qwen2.5-omni"
# model = Qwen2_5OmniModel.from_pretrained(model_id, torch_dtype="auto", device_map="auto").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
Qwen2_5OmniPreTrainedModel._init_weights = unittest.mock.Mock()
model = Qwen2_5OmniForConditionalGeneration.from_pretrained(
model_id,
torch_dtype="auto",
device_map="auto",
attn_implementation="flash_attention_2",
).eval()
processor = Qwen2_5OmniProcessor.from_pretrained(model_id)
conversation = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are Qwen, a virtual human developed by the Qwen Team, Alibaba Group, capable of perceiving auditory and visual inputs, as well as generating text and speech."}
],
},
{
"role": "user",
"content": [
{"type": "text", "text": "Hi, can you tell me a joke?"},
# {"type": "audio", "audio": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Audio/glass-breaking-151256.mp3"},
# {"type": "video", "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2.5-Omni/draw.mp4"},
{"type": "image", "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg"},
],
},
]
# Preparation for inference
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios, images, videos = process_mm_info(conversation, use_audio_in_video=True)
print('Audios:', audios)
print('Images:', images)
print('Videos:', videos)
inputs = processor(text=text, audios=audios, images=images, videos=videos, return_tensors="pt", padding=True)
inputs = inputs.to(model.device).to(model.dtype)
# Inference: Generation of the output text and audio
text_ids, audio = model.generate(
**inputs, use_audio_in_video=True,
thinker_max_new_tokens=16, talker_max_new_tokens=16,
temperature=0.1,
)
text = processor.batch_decode(text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(text, '\n' * 3)
sf.write(
"/tmp/output.wav",
audio.reshape(-1).detach().cpu().numpy(),
samplerate=24000,
)
```
### Codes to create this repo:
```python
import unittest
from pathlib import Path
import torch
import accelerate
from huggingface_hub import hf_hub_download
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
Qwen2_5OmniForConditionalGeneration,
Qwen2_5OmniPreTrainedModel,
Qwen2_5OmniProcessor,
pipeline,
set_seed,
)
source_model_id = "Qwen/Qwen2.5-Omni-7B"
save_folder = "/tmp/tiny-random/qwen2.5-omni"
processor = Qwen2_5OmniProcessor.from_pretrained(
source_model_id, trust_remote_code=True,
)
processor.save_pretrained(save_folder)
config = AutoConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
OUTPUT_DIM = 16
config.talker_config.num_hidden_layers = 1
config.talker_config.hidden_size = 16
config.talker_config.embedding_size = OUTPUT_DIM
config.talker_config.head_dim = 16
config.talker_config.num_attention_heads = 1
config.talker_config.num_key_value_heads = 1
config.talker_config.intermediate_size = 32
config.talker_config.rope_scaling['mrope_section'] = [2, 2, 4]
assert 2 * sum(config.talker_config.rope_scaling['mrope_section']
) == config.talker_config.hidden_size / config.talker_config.num_attention_heads
config.thinker_config.audio_config.num_hidden_layers = 1
config.thinker_config.audio_config.encoder_layers = 1
config.thinker_config.audio_config.d_model = 16
config.thinker_config.audio_config.encoder_attention_heads = 1
config.thinker_config.audio_config.encoder_ffn_dim = 32
config.thinker_config.audio_config.output_dim = OUTPUT_DIM
config.thinker_config.text_config.num_hidden_layers = 1
config.thinker_config.text_config.hidden_size = OUTPUT_DIM
config.thinker_config.text_config.intermediate_size = 32
config.thinker_config.text_config.num_attention_heads = 1
config.thinker_config.text_config.num_key_value_heads = 1
config.thinker_config.text_config.rope_scaling['mrope_section'] = [2, 2, 4]
assert 2 * sum(config.thinker_config.text_config.rope_scaling['mrope_section']
) == config.thinker_config.text_config.hidden_size / config.thinker_config.text_config.num_attention_heads
config.thinker_config.vision_config.depth = 2
config.thinker_config.vision_config.embed_dim = 16
config.thinker_config.vision_config.hidden_size = 16
config.thinker_config.vision_config.intermediate_size = 32
config.thinker_config.vision_config.out_hidden_size = OUTPUT_DIM
config.thinker_config.vision_config.num_heads = 1
config.thinker_config.vision_config.fullatt_block_indexes = [1]
config.token2wav_config.bigvgan_config.resblock_dilation_sizes = [[1, 3, 5]]
config.token2wav_config.bigvgan_config.resblock_kernel_sizes = [7]
config.token2wav_config.bigvgan_config.upsample_initial_channel = 32
config.token2wav_config.bigvgan_config.upsample_kernel_sizes = [11, 4]
config.token2wav_config.bigvgan_config.upsample_rates = [5, 2]
config.token2wav_config.dit_config.depth = 2
config.token2wav_config.dit_config.num_hidden_layers = 2
config.token2wav_config.dit_config.hidden_size = 16
config.token2wav_config.dit_config.dim = 16
config.token2wav_config.dit_config.emb_dim = 16
config.token2wav_config.dit_config.enc_attention_channels = 16
config.token2wav_config.dit_config.enc_channels = [32, 32, 32]
config.token2wav_config.dit_config.enc_dilations = [1, 3, 4]
config.token2wav_config.dit_config.enc_kernel_sizes = [5, 3, 1]
config.token2wav_config.dit_config.enc_dim = 16
config.token2wav_config.dit_config.enc_emb_dim = 16
config.token2wav_config.dit_config.enc_lin_neurons = 16
config.token2wav_config.dit_config.head_dim = 16
config.token2wav_config.dit_config.num_attention_heads = 1
config.token2wav_config.dit_config.heads = 1
config.token2wav_config.dit_config.look_ahead_layers = [1]
config.token2wav_config.dit_config.look_backward_layers = [0]
# avoid mismatch in vocab size because this is random model!
config.token2wav_config.dit_config.num_embeds = config.talker_config.vocab_size
print(config)
spk_dict = torch.load(hf_hub_download(source_model_id, 'spk_dict.pt', repo_type='model'))
for _, info in spk_dict.items():
info['cond'] = info['cond'][:, :config.token2wav_config.dit_config.enc_emb_dim].clone()
torch.save(spk_dict, Path(save_folder, "spk_dict.pt"))
# patch for non-affine layernorm
Qwen2_5OmniPreTrainedModel._init_weights = unittest.mock.Mock()
torch.set_default_dtype(torch.bfloat16)
model = Qwen2_5OmniForConditionalGeneration(
config,
)
torch.set_default_dtype(torch.float32)
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
set_seed(42)
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.5)
print(name, p.shape, p.dtype)
model.save_pretrained(save_folder)
``` |