---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- csr
- generated_from_trainer
- dataset_size:99000
- loss:CSRLoss
- loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
- text: Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia
continue to take somewhat differing stances on regional conflicts such the Yemeni
Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement,
which has fought against Saudi-backed forces, and the Syrian Civil War, where
the UAE has disagreed with Saudi support for Islamist movements.[4]
- text: Economy of New Zealand New Zealand's diverse market economy has a sizable
service sector, accounting for 63% of all GDP activity in 2013.[17] Large scale
manufacturing industries include aluminium production, food processing, metal
fabrication, wood and paper products. Mining, manufacturing, electricity, gas,
water, and waste services accounted for 16.5% of GDP in 2013.[17] The primary
sector continues to dominate New Zealand's exports, despite accounting for 6.5%
of GDP in 2013.[17]
- text: who was the first president of indian science congress meeting held in kolkata
in 1914
- text: Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as
a single after a fourteen-year breakup. It was also the first song written by
bandmates Don Henley and Glenn Frey when the band reunited. "Get Over It" was
played live for the first time during their Hell Freezes Over tour in 1994. It
returned the band to the U.S. Top 40 after a fourteen-year absence, peaking at
No. 31 on the Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream
Rock Tracks chart. The song was not played live by the Eagles after the "Hell
Freezes Over" tour in 1994. It remains the group's last Top 40 hit in the U.S.
- text: 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
who is considered by Christians to be one of the first Gentiles to convert to
the faith, as related in Acts of the Apostles.'
datasets:
- sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
emissions: 53.0273650168183
energy_consumed: 0.13642164181511365
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.41
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Sparse CSR model trained on Natural Questions
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 128
type: NanoMSMARCO_128
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.66
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.72
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.22
name: Dot Precision@3
- type: dot_precision@5
value: 0.14400000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08199999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.38
name: Dot Recall@1
- type: dot_recall@3
value: 0.66
name: Dot Recall@3
- type: dot_recall@5
value: 0.72
name: Dot Recall@5
- type: dot_recall@10
value: 0.82
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6074833126260415
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5392698412698412
name: Dot Mrr@10
- type: dot_map@100
value: 0.5478391044500884
name: Dot Map@100
- type: query_active_dims
value: 128.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.96875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 128.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.96875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus 128
type: NanoNFCorpus_128
metrics:
- type: dot_accuracy@1
value: 0.44
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.64
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.68
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.44
name: Dot Precision@1
- type: dot_precision@3
value: 0.3133333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.28
name: Dot Precision@5
- type: dot_precision@10
value: 0.24600000000000002
name: Dot Precision@10
- type: dot_recall@1
value: 0.045132854073603
name: Dot Recall@1
- type: dot_recall@3
value: 0.06751477851868476
name: Dot Recall@3
- type: dot_recall@5
value: 0.08765169300408888
name: Dot Recall@5
- type: dot_recall@10
value: 0.12035202437952344
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3037747903284991
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5081904761904761
name: Dot Mrr@10
- type: dot_map@100
value: 0.13867493157888547
name: Dot Map@100
- type: query_active_dims
value: 128.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.96875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 128.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.96875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 128
type: NanoNQ_128
metrics:
- type: dot_accuracy@1
value: 0.48
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.66
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.48
name: Dot Precision@1
- type: dot_precision@3
value: 0.22666666666666668
name: Dot Precision@3
- type: dot_precision@5
value: 0.14800000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08999999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.45
name: Dot Recall@1
- type: dot_recall@3
value: 0.62
name: Dot Recall@3
- type: dot_recall@5
value: 0.67
name: Dot Recall@5
- type: dot_recall@10
value: 0.81
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6337677207897237
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5932936507936507
name: Dot Mrr@10
- type: dot_map@100
value: 0.5761859932841973
name: Dot Map@100
- type: query_active_dims
value: 128.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.96875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 128.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.96875
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 128
type: NanoBEIR_mean_128
metrics:
- type: dot_accuracy@1
value: 0.43333333333333335
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6200000000000001
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6866666666666665
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7799999999999999
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.43333333333333335
name: Dot Precision@1
- type: dot_precision@3
value: 0.25333333333333335
name: Dot Precision@3
- type: dot_precision@5
value: 0.19066666666666668
name: Dot Precision@5
- type: dot_precision@10
value: 0.13933333333333334
name: Dot Precision@10
- type: dot_recall@1
value: 0.2917109513578677
name: Dot Recall@1
- type: dot_recall@3
value: 0.44917159283956165
name: Dot Recall@3
- type: dot_recall@5
value: 0.49255056433469635
name: Dot Recall@5
- type: dot_recall@10
value: 0.5834506747931745
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5150086079147548
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5469179894179893
name: Dot Mrr@10
- type: dot_map@100
value: 0.42090000977105707
name: Dot Map@100
- type: query_active_dims
value: 128.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.96875
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 128.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.96875
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 256
type: NanoMSMARCO_256
metrics:
- type: dot_accuracy@1
value: 0.44
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.64
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.74
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.44
name: Dot Precision@1
- type: dot_precision@3
value: 0.21333333333333332
name: Dot Precision@3
- type: dot_precision@5
value: 0.14800000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.44
name: Dot Recall@1
- type: dot_recall@3
value: 0.64
name: Dot Recall@3
- type: dot_recall@5
value: 0.74
name: Dot Recall@5
- type: dot_recall@10
value: 0.84
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6405150998246686
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5768809523809523
name: Dot Mrr@10
- type: dot_map@100
value: 0.5851061967133396
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus 256
type: NanoNFCorpus_256
metrics:
- type: dot_accuracy@1
value: 0.42
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.58
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.62
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.42
name: Dot Precision@1
- type: dot_precision@3
value: 0.37333333333333324
name: Dot Precision@3
- type: dot_precision@5
value: 0.324
name: Dot Precision@5
- type: dot_precision@10
value: 0.248
name: Dot Precision@10
- type: dot_recall@1
value: 0.045123947439696374
name: Dot Recall@1
- type: dot_recall@3
value: 0.08083248635236362
name: Dot Recall@3
- type: dot_recall@5
value: 0.0993952531376598
name: Dot Recall@5
- type: dot_recall@10
value: 0.1259275313458498
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3181127342430942
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5041666666666667
name: Dot Mrr@10
- type: dot_map@100
value: 0.15847418838222901
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 256
type: NanoNQ_256
metrics:
- type: dot_accuracy@1
value: 0.54
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.54
name: Dot Precision@1
- type: dot_precision@3
value: 0.24
name: Dot Precision@3
- type: dot_precision@5
value: 0.16799999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.092
name: Dot Precision@10
- type: dot_recall@1
value: 0.51
name: Dot Recall@1
- type: dot_recall@3
value: 0.66
name: Dot Recall@3
- type: dot_recall@5
value: 0.75
name: Dot Recall@5
- type: dot_recall@10
value: 0.81
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6642484604451891
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6294126984126983
name: Dot Mrr@10
- type: dot_map@100
value: 0.6162769242153361
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 256
type: NanoBEIR_mean_256
metrics:
- type: dot_accuracy@1
value: 0.4666666666666666
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.64
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7133333333333333
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7666666666666666
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4666666666666666
name: Dot Precision@1
- type: dot_precision@3
value: 0.2755555555555555
name: Dot Precision@3
- type: dot_precision@5
value: 0.21333333333333335
name: Dot Precision@5
- type: dot_precision@10
value: 0.1413333333333333
name: Dot Precision@10
- type: dot_recall@1
value: 0.3317079824798988
name: Dot Recall@1
- type: dot_recall@3
value: 0.46027749545078783
name: Dot Recall@3
- type: dot_recall@5
value: 0.5297984177125533
name: Dot Recall@5
- type: dot_recall@10
value: 0.5919758437819499
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5409587648376507
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.570153439153439
name: Dot Mrr@10
- type: dot_map@100
value: 0.4532857697703016
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: dot_accuracy@1
value: 0.28
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.52
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.28
name: Dot Precision@1
- type: dot_precision@3
value: 0.18666666666666668
name: Dot Precision@3
- type: dot_precision@5
value: 0.16799999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.10799999999999997
name: Dot Precision@10
- type: dot_recall@1
value: 0.12166666666666665
name: Dot Recall@1
- type: dot_recall@3
value: 0.23233333333333334
name: Dot Recall@3
- type: dot_recall@5
value: 0.348
name: Dot Recall@5
- type: dot_recall@10
value: 0.42633333333333334
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.33235923006734097
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.43644444444444447
name: Dot Mrr@10
- type: dot_map@100
value: 0.24903211945618525
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: dot_accuracy@1
value: 0.8
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.9
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.92
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.8
name: Dot Precision@1
- type: dot_precision@3
value: 0.6466666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.56
name: Dot Precision@5
- type: dot_precision@10
value: 0.474
name: Dot Precision@10
- type: dot_recall@1
value: 0.09128542236179474
name: Dot Recall@1
- type: dot_recall@3
value: 0.17409405829521904
name: Dot Recall@3
- type: dot_recall@5
value: 0.22516141018064886
name: Dot Recall@5
- type: dot_recall@10
value: 0.321390285824061
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.600179050204524
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8425
name: Dot Mrr@10
- type: dot_map@100
value: 0.45264984932006563
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: dot_accuracy@1
value: 0.84
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.92
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.96
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.96
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.84
name: Dot Precision@1
- type: dot_precision@3
value: 0.32
name: Dot Precision@3
- type: dot_precision@5
value: 0.19999999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.7866666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.8866666666666667
name: Dot Recall@3
- type: dot_recall@5
value: 0.9266666666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.9266666666666667
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.8816129048397259
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.89
name: Dot Mrr@10
- type: dot_map@100
value: 0.8589881484317317
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: dot_accuracy@1
value: 0.48
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.64
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.74
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.48
name: Dot Precision@1
- type: dot_precision@3
value: 0.3066666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.22399999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.13599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.2592460317460317
name: Dot Recall@1
- type: dot_recall@3
value: 0.39734920634920634
name: Dot Recall@3
- type: dot_recall@5
value: 0.4497857142857143
name: Dot Recall@5
- type: dot_recall@10
value: 0.5795634920634921
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.48812055653800884
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5517460317460319
name: Dot Mrr@10
- type: dot_map@100
value: 0.42554170336694114
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: dot_accuracy@1
value: 0.84
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.96
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.96
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.98
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.84
name: Dot Precision@1
- type: dot_precision@3
value: 0.5133333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.32799999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.16999999999999996
name: Dot Precision@10
- type: dot_recall@1
value: 0.42
name: Dot Recall@1
- type: dot_recall@3
value: 0.77
name: Dot Recall@3
- type: dot_recall@5
value: 0.82
name: Dot Recall@5
- type: dot_recall@10
value: 0.85
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.8106522538764799
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.8966666666666666
name: Dot Mrr@10
- type: dot_map@100
value: 0.7565706035126855
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.44
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.62
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.74
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.44
name: Dot Precision@1
- type: dot_precision@3
value: 0.20666666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.14800000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.44
name: Dot Recall@1
- type: dot_recall@3
value: 0.62
name: Dot Recall@3
- type: dot_recall@5
value: 0.74
name: Dot Recall@5
- type: dot_recall@10
value: 0.84
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6329477813439243
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5677777777777777
name: Dot Mrr@10
- type: dot_map@100
value: 0.5762304873870092
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.42
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.56
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.64
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.66
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.42
name: Dot Precision@1
- type: dot_precision@3
value: 0.37999999999999995
name: Dot Precision@3
- type: dot_precision@5
value: 0.34800000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.258
name: Dot Precision@10
- type: dot_recall@1
value: 0.04486258380333274
name: Dot Recall@1
- type: dot_recall@3
value: 0.08768477299713343
name: Dot Recall@3
- type: dot_recall@5
value: 0.10844641112515632
name: Dot Recall@5
- type: dot_recall@10
value: 0.135531563356284
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3285187113745097
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5009999999999999
name: Dot Mrr@10
- type: dot_map@100
value: 0.16174125549238802
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.58
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.58
name: Dot Precision@1
- type: dot_precision@3
value: 0.24
name: Dot Precision@3
- type: dot_precision@5
value: 0.16799999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.08999999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.55
name: Dot Recall@1
- type: dot_recall@3
value: 0.66
name: Dot Recall@3
- type: dot_recall@5
value: 0.75
name: Dot Recall@5
- type: dot_recall@10
value: 0.79
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.677342414343143
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6521666666666666
name: Dot Mrr@10
- type: dot_map@100
value: 0.6420660106369513
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: dot_accuracy@1
value: 0.9
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 1.0
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 1.0
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9
name: Dot Precision@1
- type: dot_precision@3
value: 0.4133333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.27199999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.13799999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.7773333333333333
name: Dot Recall@1
- type: dot_recall@3
value: 0.9620000000000001
name: Dot Recall@3
- type: dot_recall@5
value: 0.9933333333333334
name: Dot Recall@5
- type: dot_recall@10
value: 0.9966666666666666
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9509657098958008
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9466666666666665
name: Dot Mrr@10
- type: dot_map@100
value: 0.9297051282051282
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: dot_accuracy@1
value: 0.42
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.72
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.82
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.88
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.42
name: Dot Precision@1
- type: dot_precision@3
value: 0.35333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.3
name: Dot Precision@5
- type: dot_precision@10
value: 0.20800000000000002
name: Dot Precision@10
- type: dot_recall@1
value: 0.09066666666666666
name: Dot Recall@1
- type: dot_recall@3
value: 0.22166666666666665
name: Dot Recall@3
- type: dot_recall@5
value: 0.3096666666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.42566666666666664
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4022717287490821
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5887222222222221
name: Dot Mrr@10
- type: dot_map@100
value: 0.32075091248131626
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.92
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.23333333333333336
name: Dot Precision@3
- type: dot_precision@5
value: 0.16
name: Dot Precision@5
- type: dot_precision@10
value: 0.092
name: Dot Precision@10
- type: dot_recall@1
value: 0.38
name: Dot Recall@1
- type: dot_recall@3
value: 0.7
name: Dot Recall@3
- type: dot_recall@5
value: 0.8
name: Dot Recall@5
- type: dot_recall@10
value: 0.92
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6550827948648061
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5706349206349206
name: Dot Mrr@10
- type: dot_map@100
value: 0.5760927960927961
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: dot_accuracy@1
value: 0.62
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.72
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.76
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.62
name: Dot Precision@1
- type: dot_precision@3
value: 0.26666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.17199999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.09599999999999997
name: Dot Precision@10
- type: dot_recall@1
value: 0.595
name: Dot Recall@1
- type: dot_recall@3
value: 0.705
name: Dot Recall@3
- type: dot_recall@5
value: 0.755
name: Dot Recall@5
- type: dot_recall@10
value: 0.84
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7193800580696723
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6823888888888889
name: Dot Mrr@10
- type: dot_map@100
value: 0.6850911930363545
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: dot_accuracy@1
value: 0.4897959183673469
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8367346938775511
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.9591836734693877
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9795918367346939
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4897959183673469
name: Dot Precision@1
- type: dot_precision@3
value: 0.5170068027210885
name: Dot Precision@3
- type: dot_precision@5
value: 0.5346938775510204
name: Dot Precision@5
- type: dot_precision@10
value: 0.4346938775510204
name: Dot Precision@10
- type: dot_recall@1
value: 0.03422245985964837
name: Dot Recall@1
- type: dot_recall@3
value: 0.10897367065265
name: Dot Recall@3
- type: dot_recall@5
value: 0.18115391425134045
name: Dot Recall@5
- type: dot_recall@10
value: 0.2884686031356881
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.47678328743473813
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6784580498866212
name: Dot Mrr@10
- type: dot_map@100
value: 0.3590479959667369
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.576138147566719
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7505180533751962
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.821475667189953
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8722762951334379
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.576138147566719
name: Dot Precision@1
- type: dot_precision@3
value: 0.3525902668759811
name: Dot Precision@3
- type: dot_precision@5
value: 0.27559183673469384
name: Dot Precision@5
- type: dot_precision@10
value: 0.18374568288854
name: Dot Precision@10
- type: dot_recall@1
value: 0.35314998700801087
name: Dot Recall@1
- type: dot_recall@3
value: 0.5019821826892981
name: Dot Recall@3
- type: dot_recall@5
value: 0.5697857012699635
name: Dot Recall@5
- type: dot_recall@10
value: 0.6415605598240661
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6120166524309044
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6773209488923774
name: Dot Mrr@10
- type: dot_map@100
value: 0.5379621694912531
name: Dot Map@100
- type: query_active_dims
value: 256.0
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9375
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 256.0
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9375
name: Corpus Sparsity Ratio
---
# Sparse CSR model trained on Natural Questions
This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.
## Model Details
### Model Description
- **Model Type:** CSR Sparse Encoder
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 4096 dimensions (trained with 256 maximum active dimensions)
- **Similarity Function:** Dot Product
- **Training Dataset:**
- [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
### Full Model Architecture
```
SparseEncoder(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-updated-reconstruction-2")
# Run inference
queries = [
"who is cornelius in the book of acts",
]
documents = [
'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
"Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[118.6570, 32.2072, 21.3971]])
```
## Evaluation
### Metrics
#### Sparse Information Retrieval
* Datasets: `NanoMSMARCO_128`, `NanoNFCorpus_128` and `NanoNQ_128`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 128
}
```
| Metric | NanoMSMARCO_128 | NanoNFCorpus_128 | NanoNQ_128 |
|:----------------------|:----------------|:-----------------|:-----------|
| dot_accuracy@1 | 0.38 | 0.44 | 0.48 |
| dot_accuracy@3 | 0.66 | 0.54 | 0.66 |
| dot_accuracy@5 | 0.72 | 0.64 | 0.7 |
| dot_accuracy@10 | 0.82 | 0.68 | 0.84 |
| dot_precision@1 | 0.38 | 0.44 | 0.48 |
| dot_precision@3 | 0.22 | 0.3133 | 0.2267 |
| dot_precision@5 | 0.144 | 0.28 | 0.148 |
| dot_precision@10 | 0.082 | 0.246 | 0.09 |
| dot_recall@1 | 0.38 | 0.0451 | 0.45 |
| dot_recall@3 | 0.66 | 0.0675 | 0.62 |
| dot_recall@5 | 0.72 | 0.0877 | 0.67 |
| dot_recall@10 | 0.82 | 0.1204 | 0.81 |
| **dot_ndcg@10** | **0.6075** | **0.3038** | **0.6338** |
| dot_mrr@10 | 0.5393 | 0.5082 | 0.5933 |
| dot_map@100 | 0.5478 | 0.1387 | 0.5762 |
| query_active_dims | 128.0 | 128.0 | 128.0 |
| query_sparsity_ratio | 0.9688 | 0.9688 | 0.9688 |
| corpus_active_dims | 128.0 | 128.0 | 128.0 |
| corpus_sparsity_ratio | 0.9688 | 0.9688 | 0.9688 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean_128`
* Evaluated with [SparseNanoBEIREvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"max_active_dims": 128
}
```
| Metric | Value |
|:----------------------|:----------|
| dot_accuracy@1 | 0.4333 |
| dot_accuracy@3 | 0.62 |
| dot_accuracy@5 | 0.6867 |
| dot_accuracy@10 | 0.78 |
| dot_precision@1 | 0.4333 |
| dot_precision@3 | 0.2533 |
| dot_precision@5 | 0.1907 |
| dot_precision@10 | 0.1393 |
| dot_recall@1 | 0.2917 |
| dot_recall@3 | 0.4492 |
| dot_recall@5 | 0.4926 |
| dot_recall@10 | 0.5835 |
| **dot_ndcg@10** | **0.515** |
| dot_mrr@10 | 0.5469 |
| dot_map@100 | 0.4209 |
| query_active_dims | 128.0 |
| query_sparsity_ratio | 0.9688 |
| corpus_active_dims | 128.0 |
| corpus_sparsity_ratio | 0.9688 |
#### Sparse Information Retrieval
* Datasets: `NanoMSMARCO_256`, `NanoNFCorpus_256` and `NanoNQ_256`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 256
}
```
| Metric | NanoMSMARCO_256 | NanoNFCorpus_256 | NanoNQ_256 |
|:----------------------|:----------------|:-----------------|:-----------|
| dot_accuracy@1 | 0.44 | 0.42 | 0.54 |
| dot_accuracy@3 | 0.64 | 0.58 | 0.7 |
| dot_accuracy@5 | 0.74 | 0.6 | 0.8 |
| dot_accuracy@10 | 0.84 | 0.62 | 0.84 |
| dot_precision@1 | 0.44 | 0.42 | 0.54 |
| dot_precision@3 | 0.2133 | 0.3733 | 0.24 |
| dot_precision@5 | 0.148 | 0.324 | 0.168 |
| dot_precision@10 | 0.084 | 0.248 | 0.092 |
| dot_recall@1 | 0.44 | 0.0451 | 0.51 |
| dot_recall@3 | 0.64 | 0.0808 | 0.66 |
| dot_recall@5 | 0.74 | 0.0994 | 0.75 |
| dot_recall@10 | 0.84 | 0.1259 | 0.81 |
| **dot_ndcg@10** | **0.6405** | **0.3181** | **0.6642** |
| dot_mrr@10 | 0.5769 | 0.5042 | 0.6294 |
| dot_map@100 | 0.5851 | 0.1585 | 0.6163 |
| query_active_dims | 256.0 | 256.0 | 256.0 |
| query_sparsity_ratio | 0.9375 | 0.9375 | 0.9375 |
| corpus_active_dims | 256.0 | 256.0 | 256.0 |
| corpus_sparsity_ratio | 0.9375 | 0.9375 | 0.9375 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean_256`
* Evaluated with [SparseNanoBEIREvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"max_active_dims": 256
}
```
| Metric | Value |
|:----------------------|:----------|
| dot_accuracy@1 | 0.4667 |
| dot_accuracy@3 | 0.64 |
| dot_accuracy@5 | 0.7133 |
| dot_accuracy@10 | 0.7667 |
| dot_precision@1 | 0.4667 |
| dot_precision@3 | 0.2756 |
| dot_precision@5 | 0.2133 |
| dot_precision@10 | 0.1413 |
| dot_recall@1 | 0.3317 |
| dot_recall@3 | 0.4603 |
| dot_recall@5 | 0.5298 |
| dot_recall@10 | 0.592 |
| **dot_ndcg@10** | **0.541** |
| dot_mrr@10 | 0.5702 |
| dot_map@100 | 0.4533 |
| query_active_dims | 256.0 |
| query_sparsity_ratio | 0.9375 |
| corpus_active_dims | 256.0 |
| corpus_sparsity_ratio | 0.9375 |
#### Sparse Information Retrieval
* Datasets: `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [SparseInformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
| Metric | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:----------------------|:-----------------|:------------|:-----------|:-------------|:-------------|:------------|:-------------|:-----------|:-------------------|:------------|:------------|:------------|:---------------|
| dot_accuracy@1 | 0.28 | 0.8 | 0.84 | 0.48 | 0.84 | 0.44 | 0.42 | 0.58 | 0.9 | 0.42 | 0.38 | 0.62 | 0.4898 |
| dot_accuracy@3 | 0.52 | 0.9 | 0.92 | 0.6 | 0.96 | 0.62 | 0.56 | 0.7 | 1.0 | 0.72 | 0.7 | 0.72 | 0.8367 |
| dot_accuracy@5 | 0.7 | 0.9 | 0.96 | 0.64 | 0.96 | 0.74 | 0.64 | 0.8 | 1.0 | 0.82 | 0.8 | 0.76 | 0.9592 |
| dot_accuracy@10 | 0.8 | 0.92 | 0.96 | 0.74 | 0.98 | 0.84 | 0.66 | 0.82 | 1.0 | 0.88 | 0.92 | 0.84 | 0.9796 |
| dot_precision@1 | 0.28 | 0.8 | 0.84 | 0.48 | 0.84 | 0.44 | 0.42 | 0.58 | 0.9 | 0.42 | 0.38 | 0.62 | 0.4898 |
| dot_precision@3 | 0.1867 | 0.6467 | 0.32 | 0.3067 | 0.5133 | 0.2067 | 0.38 | 0.24 | 0.4133 | 0.3533 | 0.2333 | 0.2667 | 0.517 |
| dot_precision@5 | 0.168 | 0.56 | 0.2 | 0.224 | 0.328 | 0.148 | 0.348 | 0.168 | 0.272 | 0.3 | 0.16 | 0.172 | 0.5347 |
| dot_precision@10 | 0.108 | 0.474 | 0.1 | 0.136 | 0.17 | 0.084 | 0.258 | 0.09 | 0.138 | 0.208 | 0.092 | 0.096 | 0.4347 |
| dot_recall@1 | 0.1217 | 0.0913 | 0.7867 | 0.2592 | 0.42 | 0.44 | 0.0449 | 0.55 | 0.7773 | 0.0907 | 0.38 | 0.595 | 0.0342 |
| dot_recall@3 | 0.2323 | 0.1741 | 0.8867 | 0.3973 | 0.77 | 0.62 | 0.0877 | 0.66 | 0.962 | 0.2217 | 0.7 | 0.705 | 0.109 |
| dot_recall@5 | 0.348 | 0.2252 | 0.9267 | 0.4498 | 0.82 | 0.74 | 0.1084 | 0.75 | 0.9933 | 0.3097 | 0.8 | 0.755 | 0.1812 |
| dot_recall@10 | 0.4263 | 0.3214 | 0.9267 | 0.5796 | 0.85 | 0.84 | 0.1355 | 0.79 | 0.9967 | 0.4257 | 0.92 | 0.84 | 0.2885 |
| **dot_ndcg@10** | **0.3324** | **0.6002** | **0.8816** | **0.4881** | **0.8107** | **0.6329** | **0.3285** | **0.6773** | **0.951** | **0.4023** | **0.6551** | **0.7194** | **0.4768** |
| dot_mrr@10 | 0.4364 | 0.8425 | 0.89 | 0.5517 | 0.8967 | 0.5678 | 0.501 | 0.6522 | 0.9467 | 0.5887 | 0.5706 | 0.6824 | 0.6785 |
| dot_map@100 | 0.249 | 0.4526 | 0.859 | 0.4255 | 0.7566 | 0.5762 | 0.1617 | 0.6421 | 0.9297 | 0.3208 | 0.5761 | 0.6851 | 0.359 |
| query_active_dims | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 |
| query_sparsity_ratio | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 |
| corpus_active_dims | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 | 256.0 |
| corpus_sparsity_ratio | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 | 0.9375 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean`
* Evaluated with [SparseNanoBEIREvaluator
](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"climatefever",
"dbpedia",
"fever",
"fiqa2018",
"hotpotqa",
"msmarco",
"nfcorpus",
"nq",
"quoraretrieval",
"scidocs",
"arguana",
"scifact",
"touche2020"
]
}
```
| Metric | Value |
|:----------------------|:----------|
| dot_accuracy@1 | 0.5761 |
| dot_accuracy@3 | 0.7505 |
| dot_accuracy@5 | 0.8215 |
| dot_accuracy@10 | 0.8723 |
| dot_precision@1 | 0.5761 |
| dot_precision@3 | 0.3526 |
| dot_precision@5 | 0.2756 |
| dot_precision@10 | 0.1837 |
| dot_recall@1 | 0.3531 |
| dot_recall@3 | 0.502 |
| dot_recall@5 | 0.5698 |
| dot_recall@10 | 0.6416 |
| **dot_ndcg@10** | **0.612** |
| dot_mrr@10 | 0.6773 |
| dot_map@100 | 0.538 |
| query_active_dims | 256.0 |
| query_sparsity_ratio | 0.9375 |
| corpus_active_dims | 256.0 |
| corpus_sparsity_ratio | 0.9375 |
## Training Details
### Training Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 99,000 training samples
* Columns: query
and answer
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details |
who played the father in papa don't preach
| Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
|
| where was the location of the battle of hastings
| Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
|
| how many puppies can a dog give birth to
| Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
|
* Loss: [CSRLoss
](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
```json
{
"beta": 0.1,
"gamma": 1.0,
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
}
```
### Evaluation Dataset
#### natural-questions
* Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
* Size: 1,000 evaluation samples
* Columns: query
and answer
* Approximate statistics based on the first 1000 samples:
| | query | answer |
|:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | where is the tiber river located in italy
| Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
|
| what kind of car does jay gatsby drive
| Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
|
| who sings if i can dream about you
| I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
|
* Loss: [CSRLoss
](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
```json
{
"beta": 0.1,
"gamma": 1.0,
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 4e-05
- `num_train_epochs`: 1
- `bf16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters