Update raven_modeling_minimal.py
Browse files- raven_modeling_minimal.py +88 -1592
raven_modeling_minimal.py
CHANGED
@@ -1,1603 +1,99 @@
|
|
1 |
-
"""
|
2 |
|
3 |
-
import
|
4 |
-
import
|
5 |
|
6 |
-
from torch import Tensor
|
7 |
-
from torch.nn.attention.flex_attention import create_block_mask, BlockMask, flex_attention
|
8 |
-
from torch.nn.attention import bias as attn_bias
|
9 |
-
from dataclasses import dataclass
|
10 |
-
from typing import Union, Optional, Any
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
###################### Huggingface Glue code I ##################################################################
|
17 |
-
from transformers import PreTrainedModel, GenerationMixin
|
18 |
-
from transformers.utils import ModelOutput
|
19 |
-
from transformers.generation.utils import GenerateDecoderOnlyOutput
|
20 |
-
|
21 |
-
import torch.nn.functional as F
|
22 |
-
from transformers import GenerationConfig
|
23 |
-
|
24 |
-
torch.backends.cuda.enable_math_sdp(False)
|
25 |
-
|
26 |
-
|
27 |
-
class RavenPreTrainedModel(PreTrainedModel):
|
28 |
-
config_class = RavenConfig
|
29 |
-
base_model_prefix = "model"
|
30 |
-
supports_gradient_checkpointing = True
|
31 |
-
_no_split_modules = ["SandwichBlock"]
|
32 |
-
_skip_keys_device_placement = ["past_key_values"]
|
33 |
-
_tied_weights_keys = ["lm_head.weight"]
|
34 |
-
_supports_flash_attn_2 = True
|
35 |
-
_supports_sdpa = True
|
36 |
-
_supports_cache_class = True
|
37 |
-
_supports_quantized_cache = False
|
38 |
-
_supports_static_cache = True
|
39 |
-
_tp_plan = {}
|
40 |
-
|
41 |
-
def _init_weights(self, module):
|
42 |
-
if not torch.rand((1,)).is_meta:
|
43 |
-
print("Random Initialization not implemented.")
|
44 |
-
|
45 |
-
|
46 |
-
@dataclass
|
47 |
-
class CausalLMOutputRecurrentLatents(ModelOutput):
|
48 |
-
loss: Optional[torch.Tensor] = None
|
49 |
-
log_ppl: Optional[torch.Tensor] = None
|
50 |
-
logits: Optional[torch.Tensor] = None
|
51 |
-
past_key_values: Optional[Cache] = None
|
52 |
-
latent_states: Optional[torch.Tensor] = None
|
53 |
-
hidden_states: Optional[torch.Tensor] = None
|
54 |
-
attention_maps: Optional[dict[int, torch.Tensor]] = None
|
55 |
-
stats: Optional[dict] = None
|
56 |
-
|
57 |
-
|
58 |
-
###################### Minimal implementation from here ############################################################
|
59 |
-
|
60 |
-
|
61 |
-
class RMSNorm(torch.nn.Module):
|
62 |
-
"""Saner dtype handling and slightly better for fusion"""
|
63 |
-
|
64 |
-
def __init__(self, dim: int, eps: float = 1e-6):
|
65 |
-
super().__init__()
|
66 |
-
self.eps = eps
|
67 |
-
self.weight = torch.nn.Parameter(torch.ones(dim))
|
68 |
-
|
69 |
-
def _norm(self, x):
|
70 |
-
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
71 |
-
|
72 |
-
def forward(self, x):
|
73 |
-
with torch.autocast(enabled=False, device_type=x.device.type if x.device.type != "meta" else "cuda"):
|
74 |
-
return self._norm(x.float()).type_as(x) * self.weight
|
75 |
-
|
76 |
-
def reset_parameters(self) -> None:
|
77 |
-
torch.nn.init.ones_(self.weight)
|
78 |
-
|
79 |
-
|
80 |
-
class HuginnDynamicCache(DynamicCache):
|
81 |
-
def __init__(self, lookup_strategy: str = "full") -> None:
|
82 |
-
super().__init__()
|
83 |
-
self._seen_tokens = 0
|
84 |
-
self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
|
85 |
-
self.value_cache: dict[int, dict[int, torch.Tensor]] = {}
|
86 |
-
# structure: cache[index_of_layer_or_recurrent_step][index_in_sequence]
|
87 |
-
# the cache is held uncoalesced because certain recurrent steps may be missing for some sequence ids if using
|
88 |
-
# per-token adaptive compute. In those cases, the "lookup_strategy" determines how to proceed
|
89 |
-
# Also, It is critical that the head indices do not overlap with the recurrent iteration indices
|
90 |
-
self.lookup_strategy = lookup_strategy
|
91 |
-
|
92 |
-
def update(
|
93 |
-
self,
|
94 |
-
key_states: torch.Tensor,
|
95 |
-
value_states: torch.Tensor,
|
96 |
-
step_idx_tensor: torch.Tensor,
|
97 |
-
lookup_strategy: Optional[str] = None,
|
98 |
-
) -> tuple[torch.Tensor, torch.Tensor]:
|
99 |
-
step_idx: int = int(step_idx_tensor) # todo: fix dicts with tensor step_idx, currently the memberships fail
|
100 |
-
lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
|
101 |
-
if "compress-" in self.lookup_strategy and step_idx > 1: # hardcode for current model!
|
102 |
-
if "compress-s" in self.lookup_strategy:
|
103 |
-
compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
|
104 |
-
new_step_idx = (step_idx - 2) % compression_stage + 2
|
105 |
-
elif "compress-anchor" in self.lookup_strategy:
|
106 |
-
if step_idx - 2 < 4 * 8: # anchor onto first 8 recurrence steps # noqa: SIM108
|
107 |
-
new_step_idx = step_idx
|
108 |
-
else: # then re-use the next 4 KV states = one recurrence for all future recurrence
|
109 |
-
new_step_idx = 34 + (step_idx - 34) % 4
|
110 |
-
# print(step_idx, new_step_idx)
|
111 |
-
else: # compress-r
|
112 |
-
compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
|
113 |
-
new_step_idx = (step_idx - 2) // compression_stage + 2
|
114 |
-
step_idx = new_step_idx
|
115 |
-
# Init
|
116 |
-
if step_idx not in self.key_cache:
|
117 |
-
self.key_cache[step_idx] = {}
|
118 |
-
self.value_cache[step_idx] = {}
|
119 |
-
# Update the number of seen tokens, we assume that step_idx=0 (first prelude) is always hit
|
120 |
-
if step_idx == 0:
|
121 |
-
self._seen_tokens += key_states.shape[-2]
|
122 |
-
# Add entries to cache
|
123 |
-
for idx, entry in enumerate(key_states.unbind(dim=-2)):
|
124 |
-
if "compress-" not in self.lookup_strategy:
|
125 |
-
assert step_idx < 0 or self._seen_tokens - key_states.shape[-2] + idx not in self.key_cache[step_idx]
|
126 |
-
self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
|
127 |
-
for idx, entry in enumerate(value_states.unbind(dim=-2)):
|
128 |
-
self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry
|
129 |
-
|
130 |
-
# Materialize past state based on lookup strategy:
|
131 |
-
if len(self.key_cache[step_idx]) == self._seen_tokens or self.lookup_strategy == "full":
|
132 |
-
# All entries are present, materialize cache as normal
|
133 |
-
return (
|
134 |
-
torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
|
135 |
-
torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
|
136 |
-
)
|
137 |
-
else: # some entries were not previously computed
|
138 |
-
if lookup_strategy.startswith("latest-m4"):
|
139 |
-
latest_keys = []
|
140 |
-
latest_values = []
|
141 |
-
for token_pos in range(self._seen_tokens):
|
142 |
-
# For steps >= 2, use modulo 4, this hard-codes the huginn block structure for now
|
143 |
-
if step_idx >= 2:
|
144 |
-
# Find valid steps for this token position
|
145 |
-
valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
|
146 |
-
max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
|
147 |
-
else:
|
148 |
-
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
|
149 |
-
latest_keys.append(self.key_cache[max_step][token_pos])
|
150 |
-
latest_values.append(self.value_cache[max_step][token_pos])
|
151 |
-
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
152 |
-
elif lookup_strategy.startswith("available-m4"):
|
153 |
-
latest_keys = []
|
154 |
-
latest_values = []
|
155 |
-
for token_pos in range(self._seen_tokens):
|
156 |
-
if token_pos in self.key_cache[step_idx]:
|
157 |
-
step = step_idx
|
158 |
-
else:
|
159 |
-
# Find valid steps for this token position
|
160 |
-
valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
|
161 |
-
step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
|
162 |
-
latest_keys.append(self.key_cache[step][token_pos])
|
163 |
-
latest_values.append(self.value_cache[step][token_pos])
|
164 |
-
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
165 |
-
elif lookup_strategy.startswith("always-last-m4"):
|
166 |
-
latest_keys = []
|
167 |
-
latest_values = []
|
168 |
-
for token_pos in range(self._seen_tokens):
|
169 |
-
# For steps >= 2, use modulo 4, this hard-codes the huginn block structure for now
|
170 |
-
if step_idx >= 2:
|
171 |
-
# Find valid steps for this token position
|
172 |
-
valid_steps = [key_step for key_step in self.key_cache if token_pos in self.key_cache[key_step]]
|
173 |
-
max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
|
174 |
-
else:
|
175 |
-
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
|
176 |
-
latest_keys.append(self.key_cache[max_step][token_pos])
|
177 |
-
latest_values.append(self.value_cache[max_step][token_pos])
|
178 |
-
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
179 |
-
elif lookup_strategy.startswith("skip"):
|
180 |
-
existing_keys = []
|
181 |
-
existing_values = []
|
182 |
-
for token_pos in range(self._seen_tokens):
|
183 |
-
if token_pos in self.key_cache[step_idx]:
|
184 |
-
existing_keys.append(self.key_cache[step_idx][token_pos])
|
185 |
-
existing_values.append(self.value_cache[step_idx][token_pos])
|
186 |
-
return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
|
187 |
-
elif lookup_strategy.startswith("randomized"): # sanity check
|
188 |
-
rand_keys = []
|
189 |
-
rand_values = []
|
190 |
-
for token_pos in range(self._seen_tokens):
|
191 |
-
if step_idx < 2: # For prelude steps
|
192 |
-
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
|
193 |
-
else: # Get all steps from same block position
|
194 |
-
curr_modulo = (step_idx - 2) % 4 + 2
|
195 |
-
valid_steps = [
|
196 |
-
s
|
197 |
-
for s in range(2, step_idx + 1)
|
198 |
-
if (s - 2) % 4 + 2 == curr_modulo and token_pos in self.key_cache[s]
|
199 |
-
]
|
200 |
-
max_step = valid_steps[torch.randint(len(valid_steps), (1,))]
|
201 |
-
rand_keys.append(self.key_cache[max_step][token_pos])
|
202 |
-
rand_values.append(self.value_cache[max_step][token_pos])
|
203 |
-
return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
|
204 |
-
else:
|
205 |
-
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
|
206 |
-
|
207 |
-
def reset(self) -> None:
|
208 |
-
"""Reset the cache state."""
|
209 |
-
self._seen_tokens = 0
|
210 |
-
self.key_cache.clear()
|
211 |
-
self.value_cache.clear()
|
212 |
-
|
213 |
-
def clear_last_k_entries(self, k: int = 0):
|
214 |
-
"""Partially clear cache."""
|
215 |
-
assert self._seen_tokens >= k
|
216 |
-
self._seen_tokens = self._seen_tokens - k
|
217 |
-
# self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
|
218 |
-
self.key_cache = {
|
219 |
-
step: {seq: seq_cache for seq, seq_cache in cache.items() if seq < self._seen_tokens}
|
220 |
-
for step, cache in self.key_cache.items()
|
221 |
-
}
|
222 |
-
self.value_cache = {
|
223 |
-
step: {seq: seq_cache for seq, seq_cache in cache.items() if seq < self._seen_tokens}
|
224 |
-
for step, cache in self.value_cache.items()
|
225 |
-
}
|
226 |
-
|
227 |
-
def get_seq_length(self, step_idx: int = 0) -> int:
|
228 |
-
return self._seen_tokens
|
229 |
-
|
230 |
-
def get_memory_usage(self) -> float:
|
231 |
-
total_bytes = 0
|
232 |
-
# For each recurrent step/layer index
|
233 |
-
for step_idx in self.key_cache:
|
234 |
-
# Get the sequence cache for this step
|
235 |
-
key_seq_cache = self.key_cache[step_idx]
|
236 |
-
for seq_idx in key_seq_cache:
|
237 |
-
key_tensor = key_seq_cache[seq_idx]
|
238 |
-
# Add memory for of key tensors, assuming value is the same
|
239 |
-
total_bytes += key_tensor.nelement() * key_tensor.element_size()
|
240 |
-
return total_bytes * 2 / (1024 * 1024)
|
241 |
-
|
242 |
-
|
243 |
-
class HuginnStaticCache(Cache):
|
244 |
-
"""Static Cache for the recurrent model"""
|
245 |
-
|
246 |
-
is_compileable = False # this is todo
|
247 |
-
|
248 |
-
def __init__(
|
249 |
-
self,
|
250 |
-
max_length: int,
|
251 |
-
max_num_steps: int,
|
252 |
-
num_heads: int,
|
253 |
-
hidden_dim: int,
|
254 |
-
batch_size: int = 1,
|
255 |
-
lookup_strategy: str = "full",
|
256 |
-
device: Optional[Union[torch.device, str]] = None,
|
257 |
-
dtype: torch.dtype = torch.float32,
|
258 |
-
) -> None:
|
259 |
-
super().__init__()
|
260 |
-
self._seen_tokens = 0
|
261 |
-
self.max_length = max_length
|
262 |
-
self.lookup_strategy = lookup_strategy
|
263 |
-
|
264 |
-
# Adjust max_num_steps based on compression strategy
|
265 |
-
if "compress-" in lookup_strategy:
|
266 |
-
compression_stage = int(lookup_strategy.split("compress-")[1][1:])
|
267 |
-
if "compress-s" in lookup_strategy:
|
268 |
-
# For modulo compression (s), we need steps for 0,1 + compressed steps
|
269 |
-
self.max_num_steps = 4 + compression_stage
|
270 |
-
else:
|
271 |
-
# For relative compression, we need steps for 0,1 + compressed steps
|
272 |
-
self.max_num_steps = 4 + (max_num_steps - 4 + compression_stage - 1) // compression_stage
|
273 |
-
else:
|
274 |
-
self.max_num_steps = max_num_steps
|
275 |
-
|
276 |
-
# Pre-allocate cache tensors [steps, batch, heads, seq_len, head_dim]
|
277 |
-
device = torch.device(device) if device is not None else None
|
278 |
-
cache_shape = (self.max_num_steps, batch_size, num_heads, max_length, hidden_dim)
|
279 |
-
|
280 |
-
self.key_cache = torch.zeros(cache_shape, dtype=dtype, device=device)
|
281 |
-
self.value_cache = torch.zeros(cache_shape, dtype=dtype, device=device)
|
282 |
-
self.valid_mask = torch.zeros((self.max_num_steps, max_length), dtype=torch.bool, device=device)
|
283 |
-
# Mark tensors as static for compile
|
284 |
-
torch._dynamo.mark_static_address(self.key_cache)
|
285 |
-
torch._dynamo.mark_static_address(self.value_cache)
|
286 |
-
torch._dynamo.mark_static_address(self.valid_mask)
|
287 |
-
|
288 |
-
def update(
|
289 |
-
self,
|
290 |
-
key_states: torch.Tensor,
|
291 |
-
value_states: torch.Tensor,
|
292 |
-
step_idx: torch.Tensor,
|
293 |
-
lookup_strategy: Optional[str] = None,
|
294 |
-
) -> tuple[torch.Tensor, torch.Tensor]:
|
295 |
-
if step_idx == 0:
|
296 |
-
self._seen_tokens += key_states.shape[-2]
|
297 |
-
|
298 |
-
# Adjust step_idx for compression
|
299 |
-
lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
|
300 |
-
if "compress-" in lookup_strategy and step_idx > 1:
|
301 |
-
compression_stage = int(lookup_strategy.split("compress-")[1][1:])
|
302 |
-
if "compress-s" in lookup_strategy:
|
303 |
-
step_idx = (step_idx - 2) % compression_stage + 2
|
304 |
-
else:
|
305 |
-
step_idx = (step_idx - 2) // compression_stage + 2
|
306 |
-
|
307 |
-
start_idx = self._seen_tokens - key_states.shape[-2]
|
308 |
-
|
309 |
-
indices = torch.arange(start_idx, start_idx + key_states.shape[-2], device=key_states.device)
|
310 |
-
self.key_cache[step_idx].index_copy_(2, indices, key_states)
|
311 |
-
self.value_cache[step_idx].index_copy_(2, indices, value_states)
|
312 |
-
self.valid_mask[step_idx, start_idx : start_idx + key_states.shape[-2]] = True
|
313 |
-
|
314 |
-
# Return based on lookup strategy
|
315 |
-
if lookup_strategy == "full":
|
316 |
-
return (
|
317 |
-
self.key_cache[step_idx, :, :, : self._seen_tokens],
|
318 |
-
self.value_cache[step_idx, :, :, : self._seen_tokens],
|
319 |
-
)
|
320 |
-
elif lookup_strategy.startswith("latest-m4"):
|
321 |
-
if step_idx >= 2:
|
322 |
-
pattern_steps = torch.arange(2, step_idx.item() + 1, 4, device=self.valid_mask.device)
|
323 |
-
pattern_valid = self.valid_mask[pattern_steps]
|
324 |
-
max_valid_step = pattern_steps[pattern_valid.to(torch.long).argmax(dim=0)]
|
325 |
-
return (
|
326 |
-
self.key_cache[max_valid_step, torch.arange(self._seen_tokens)],
|
327 |
-
self.value_cache[max_valid_step, torch.arange(self._seen_tokens)],
|
328 |
-
)
|
329 |
-
return self.key_cache[step_idx, :, :, : self._seen_tokens], self.value_cache[
|
330 |
-
step_idx, :, :, : self._seen_tokens
|
331 |
-
]
|
332 |
-
elif lookup_strategy == "skip":
|
333 |
-
valid_mask = self.valid_mask[step_idx, : self._seen_tokens]
|
334 |
-
return (
|
335 |
-
self.key_cache[step_idx, :, :, : self._seen_tokens][valid_mask],
|
336 |
-
self.value_cache[step_idx, :, :, : self._seen_tokens][valid_mask],
|
337 |
-
)
|
338 |
-
elif lookup_strategy.startswith("randomized"):
|
339 |
-
if step_idx < 2:
|
340 |
-
max_step = step_idx
|
341 |
-
else:
|
342 |
-
curr_modulo = (step_idx - 2) % 4 + 2
|
343 |
-
valid_steps = (
|
344 |
-
torch.where(
|
345 |
-
(torch.arange(2, step_idx.item() + 1, device=self.valid_mask.device) - 2) % 4 + 2 == curr_modulo
|
346 |
-
)[0]
|
347 |
-
+ 2
|
348 |
-
)
|
349 |
-
rand_idx = torch.randint(len(valid_steps), (1,), device=valid_steps.device)
|
350 |
-
max_step = valid_steps[rand_idx]
|
351 |
-
return self.key_cache[max_step, : self._seen_tokens], self.value_cache[max_step, : self._seen_tokens]
|
352 |
-
else:
|
353 |
-
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
|
354 |
-
|
355 |
-
def reset(self) -> None:
|
356 |
-
self._seen_tokens = 0
|
357 |
-
self.key_cache.zero_()
|
358 |
-
self.value_cache.zero_()
|
359 |
-
self.valid_mask.zero_()
|
360 |
-
|
361 |
-
def get_seq_length(self, step_idx: int = 0) -> int:
|
362 |
-
return self._seen_tokens
|
363 |
-
|
364 |
-
def get_memory_usage(self) -> float:
|
365 |
-
return (self.key_cache.nelement() + self.value_cache.nelement()) * self.key_cache.element_size() / (1024 * 1024)
|
366 |
-
|
367 |
-
|
368 |
-
ValidCache = HuginnDynamicCache | HuginnStaticCache
|
369 |
-
|
370 |
-
|
371 |
-
class CausalSelfAttention(torch.nn.Module):
|
372 |
-
def __init__(self, config: RavenConfig) -> None:
|
373 |
-
super().__init__()
|
374 |
-
self.config = config
|
375 |
-
self.n_head = config.num_attention_heads
|
376 |
-
self.n_kv_heads = config.num_key_value_heads
|
377 |
-
self.head_dim = config.n_embd // self.n_head
|
378 |
-
|
379 |
-
shape = (self.n_head + 2 * self.n_kv_heads) * self.head_dim
|
380 |
-
self.chunks = [config.n_embd, self.n_kv_heads * self.head_dim, self.n_kv_heads * self.head_dim]
|
381 |
-
self.Wqkv = torch.nn.Linear(config.n_embd, shape, bias=False)
|
382 |
-
if config.qk_bias:
|
383 |
-
self.qk_bias = torch.nn.Parameter(torch.zeros(2, 1, self.n_head, self.head_dim))
|
384 |
-
self.proj = torch.nn.Linear(config.n_embd, config.n_embd, bias=False)
|
385 |
-
|
386 |
-
def forward(
|
387 |
-
self,
|
388 |
-
x: Tensor,
|
389 |
-
freqs_cis: Tensor,
|
390 |
-
block_idx: torch.Tensor,
|
391 |
-
mask: Optional[BlockMask] = None,
|
392 |
-
past_key_values: Optional[ValidCache] = None,
|
393 |
-
) -> Tensor:
|
394 |
-
B, S, E = x.shape # batch size, sequence length, embedding dimensionality (n_embd)
|
395 |
-
q, k, v = self.Wqkv(x).split(self.chunks, dim=2)
|
396 |
-
q = q.view(B, S, self.n_head, self.head_dim)
|
397 |
-
k = k.view(B, S, self.n_kv_heads, self.head_dim)
|
398 |
-
v = v.view(B, S, self.n_kv_heads, self.head_dim)
|
399 |
-
# bias?
|
400 |
-
if self.config.qk_bias:
|
401 |
-
q_bias, k_bias = self.qk_bias.split(1, dim=0)
|
402 |
-
q, k = (q + q_bias).to(q.dtype), (k + k_bias).to(q.dtype)
|
403 |
-
# apply rotary
|
404 |
-
q, k = apply_rotary_emb_complex_like(q, k, freqs_cis=freqs_cis)
|
405 |
-
|
406 |
-
q = q.transpose(1, 2) # (B, nh, S, hs)
|
407 |
-
k = k.transpose(1, 2)
|
408 |
-
v = v.transpose(1, 2)
|
409 |
-
|
410 |
-
if past_key_values is not None:
|
411 |
-
k, v = past_key_values.update(k, v, block_idx)
|
412 |
-
|
413 |
-
if mask is not None:
|
414 |
-
y: torch.Tensor = flex_attention(q, k, v, block_mask=mask) # type: ignore
|
415 |
-
else:
|
416 |
-
if q.shape[2] < k.shape[2]:
|
417 |
-
if q.shape[2] > 1:
|
418 |
-
bias = attn_bias.causal_lower_right(q.shape[2], k.shape[2])
|
419 |
-
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, bias, dropout_p=0.0)
|
420 |
-
else:
|
421 |
-
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=False)
|
422 |
-
else:
|
423 |
-
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=True)
|
424 |
-
y = y.transpose(1, 2).reshape(B, S, E).contiguous() # reshape is a view if possible (it mostly is)
|
425 |
-
return self.proj(y)
|
426 |
-
|
427 |
-
|
428 |
-
class GatedMLP(torch.nn.Module):
|
429 |
-
def __init__(self, config: RavenConfig, in_features: int = 0) -> None:
|
430 |
-
super().__init__()
|
431 |
-
in_features = config.n_embd if in_features == 0 else in_features
|
432 |
-
self.fc = torch.nn.Linear(in_features, config.intermediate_size * 2, bias=False)
|
433 |
-
|
434 |
-
self.proj = torch.nn.Linear(config.intermediate_size, config.n_embd, bias=False)
|
435 |
-
self.nonlin = torch.nn.SiLU()
|
436 |
-
|
437 |
-
def forward(self, x: Tensor) -> Tensor:
|
438 |
-
# modified to single FC layer to improve parallelism
|
439 |
-
x_fc_1, x_fc_2 = self.fc(x).chunk(2, dim=-1)
|
440 |
-
x = self.nonlin(x_fc_1) * x_fc_2
|
441 |
-
return self.proj(x)
|
442 |
-
|
443 |
-
|
444 |
-
class SandwichBlock(torch.nn.Module):
|
445 |
-
expanded = False
|
446 |
-
|
447 |
-
def __init__(self, config: RavenConfig, layer_id: int) -> None:
|
448 |
-
super().__init__()
|
449 |
-
self.norm_1 = RMSNorm(config.n_embd, eps=config.norm_eps)
|
450 |
-
self.attn = CausalSelfAttention(config)
|
451 |
-
self.norm_2 = RMSNorm(config.n_embd, eps=config.norm_eps)
|
452 |
-
self.mlp = GatedMLP(config)
|
453 |
-
self.norm_3 = RMSNorm(config.n_embd, eps=config.norm_eps)
|
454 |
-
self.norm_4 = RMSNorm(config.n_embd, eps=config.norm_eps)
|
455 |
-
self.layer_id = layer_id
|
456 |
-
|
457 |
-
def forward(
|
458 |
-
self,
|
459 |
-
x: Tensor,
|
460 |
-
freqs_cis: Tensor,
|
461 |
-
step_idx: int,
|
462 |
-
mask: Optional[BlockMask] = None,
|
463 |
-
past_key_values: Optional[ValidCache] = None,
|
464 |
-
) -> Tensor:
|
465 |
-
attn_out = self.attn(self.norm_1(x), freqs_cis, step_idx, mask, past_key_values)
|
466 |
-
x = self.norm_2(attn_out + x)
|
467 |
-
x = self.norm_4(self.mlp(self.norm_3(x)) + x)
|
468 |
-
return x
|
469 |
-
|
470 |
-
|
471 |
-
class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
|
472 |
-
freqs_cis: torch.Tensor
|
473 |
|
474 |
def __init__(
|
475 |
self,
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
# rope
|
507 |
-
self.register_buffer("freqs_cis", self._precompute_freqs_cis(), persistent=True)
|
508 |
-
|
509 |
-
def get_input_embeddings(self):
|
510 |
-
return self.transformer.wte
|
511 |
-
|
512 |
-
def get_output_embeddings(self):
|
513 |
-
return self.lm_head
|
514 |
-
|
515 |
-
def _precompute_freqs_cis(self):
|
516 |
-
# can actually be a buffer now, and remains in fp32! (at least in the settings I tested)
|
517 |
-
freqs_cis = precompute_freqs_cis(
|
518 |
-
self.config.n_embd // self.config.num_attention_heads, self.config.block_size, self.config.rope_base, 1
|
519 |
-
)
|
520 |
-
return freqs_cis
|
521 |
-
|
522 |
-
def compile_mask(
|
523 |
-
self,
|
524 |
-
input_ids: torch.Tensor,
|
525 |
-
attention_mask: Optional[torch.Tensor] = None,
|
526 |
-
past_key_values: Optional[ValidCache] = None,
|
527 |
-
pad_token_id=65509,
|
528 |
-
) -> Optional[BlockMask]:
|
529 |
-
batch_size, seq_len = input_ids.shape[0], input_ids.shape[1]
|
530 |
-
|
531 |
-
# If no padding and no attention mask, no need for a mask
|
532 |
-
if attention_mask is None and (input_ids == pad_token_id).sum() == 0:
|
533 |
-
return None
|
534 |
-
|
535 |
-
if past_key_values is not None and seq_len == 1:
|
536 |
-
return None
|
537 |
-
|
538 |
-
# Get total sequence length including cache
|
539 |
-
cache_len = past_key_values.get_seq_length() if past_key_values is not None else 0
|
540 |
-
kv_length = cache_len + seq_len
|
541 |
-
|
542 |
-
if attention_mask is None:
|
543 |
-
|
544 |
-
def mask_mod(b, h, q_idx, kv_idx):
|
545 |
-
return q_idx >= kv_idx & (input_ids[b, kv_idx] != pad_token_id)
|
546 |
-
else:
|
547 |
-
|
548 |
-
def mask_mod(b, h, q_idx, kv_idx):
|
549 |
-
return (q_idx >= kv_idx) & (input_ids[b, kv_idx] != pad_token_id) & attention_mask[b, q_idx, kv_idx]
|
550 |
-
|
551 |
-
kv_length = past_key_values.get_seq_length() if past_key_values is not None else seq_len
|
552 |
-
if kv_length == 0:
|
553 |
-
kv_length = seq_len # prefill
|
554 |
-
block_mask = create_block_mask(
|
555 |
-
mask_mod,
|
556 |
-
B=batch_size,
|
557 |
-
H=None,
|
558 |
-
Q_LEN=seq_len,
|
559 |
-
KV_LEN=kv_length,
|
560 |
-
device=input_ids.device,
|
561 |
-
)
|
562 |
-
|
563 |
-
# # Define mask_mod function
|
564 |
-
# def mask_mod(b, h, q_idx, kv_idx):
|
565 |
-
# # Always apply causal constraint
|
566 |
-
# is_causal = q_idx >= kv_idx
|
567 |
-
|
568 |
-
# # Handle cache vs current tokens
|
569 |
-
# is_cache = kv_idx < cache_len
|
570 |
-
# current_idx = kv_idx - cache_len
|
571 |
-
|
572 |
-
# # For cache: always valid; For current: check padding
|
573 |
-
# not_pad = input_ids[b, current_idx] != pad_token_id
|
574 |
-
# valid = is_cache | not_pad
|
575 |
-
|
576 |
-
# # Apply attention mask if provided
|
577 |
-
# if attention_mask is not None:
|
578 |
-
# q_idx_curr = q_idx - cache_len
|
579 |
-
# attn_valid = attention_mask[b, q_idx_curr, current_idx]
|
580 |
-
# valid = valid & (is_cache | attn_valid)
|
581 |
-
|
582 |
-
# return is_causal & valid
|
583 |
-
|
584 |
-
# def mask_mod(b, h, q_idx, kv_idx):
|
585 |
-
# is_causal = q_idx >= kv_idx
|
586 |
-
# is_current = (kv_idx >= cache_len) & (kv_idx < kv_length)
|
587 |
-
# current_idx = kv_idx - cache_len
|
588 |
-
|
589 |
-
# is_valid = (~is_current) | (
|
590 |
-
# (current_idx >= 0) & (current_idx < seq_len) & (input_ids != pad_token_id)[b, current_idx % seq_len]
|
591 |
-
# )
|
592 |
-
|
593 |
-
# return is_causal & is_valid
|
594 |
-
|
595 |
-
# # Define mask_mod function
|
596 |
-
# def mask_mod(b, h, q_idx, kv_idx):
|
597 |
-
# # Always apply causal constraint
|
598 |
-
# is_causal = q_idx >= kv_idx
|
599 |
-
|
600 |
-
# # Handle cache vs current tokens
|
601 |
-
# is_cache = kv_idx < cache_len
|
602 |
-
# current_idx = kv_idx - cache_len
|
603 |
-
# in_bounds = (current_idx >= 0) & (current_idx < seq_len)
|
604 |
-
|
605 |
-
# # For cache: always valid; For current: check padding
|
606 |
-
# not_pad = (input_ids[b, current_idx % seq_len] != pad_token_id) | ~in_bounds
|
607 |
-
# valid = is_cache | (not_pad & in_bounds)
|
608 |
-
|
609 |
-
# # Apply attention mask if provided
|
610 |
-
# if attention_mask is not None:
|
611 |
-
# q_idx_curr = q_idx - cache_len
|
612 |
-
# q_in_bounds = (q_idx_curr >= 0) & (q_idx_curr < seq_len)
|
613 |
-
# attn_valid = attention_mask[b, q_idx_curr % seq_len, current_idx % seq_len] | ~(in_bounds & q_in_bounds)
|
614 |
-
# valid = valid & (is_cache | attn_valid)
|
615 |
-
|
616 |
-
# return is_causal & valid
|
617 |
-
|
618 |
-
# Create block mask
|
619 |
-
block_mask = create_block_mask(
|
620 |
-
mask_mod,
|
621 |
-
B=batch_size,
|
622 |
-
H=None,
|
623 |
-
Q_LEN=seq_len,
|
624 |
-
KV_LEN=kv_length,
|
625 |
-
device=input_ids.device,
|
626 |
-
)
|
627 |
-
|
628 |
-
return block_mask
|
629 |
-
|
630 |
-
def forward(
|
631 |
-
self,
|
632 |
-
input_ids: torch.Tensor,
|
633 |
-
input_embeds: Optional[torch.Tensor] = None,
|
634 |
-
input_states: Optional[torch.Tensor] = None,
|
635 |
-
attention_mask: Optional[torch.Tensor] = None, # binary mask of shape q x kv, True=valid position
|
636 |
-
position_ids: Optional[torch.Tensor] = None,
|
637 |
-
labels: Optional[torch.Tensor] = None,
|
638 |
-
num_steps: Optional[torch.Tensor] = None,
|
639 |
-
past_key_values: Optional[ValidCache] = None,
|
640 |
-
output_details: dict = {
|
641 |
-
"return_logits": True,
|
642 |
-
"return_latents": True,
|
643 |
-
"return_head": False,
|
644 |
-
"return_stats": False,
|
645 |
-
},
|
646 |
-
use_cache: bool = False,
|
647 |
-
cache_position: Optional[torch.Tensor] = None,
|
648 |
-
init_scale: float = 1.0,
|
649 |
-
**kwargs,
|
650 |
-
) -> CausalLMOutputRecurrentLatents:
|
651 |
-
# Support multiple position formats:
|
652 |
-
if position_ids is None and cache_position is None:
|
653 |
-
freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
|
654 |
-
elif position_ids is not None:
|
655 |
-
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
656 |
-
elif cache_position is not None:
|
657 |
-
freqs_cis = self.freqs_cis[:, cache_position]
|
658 |
-
|
659 |
-
if input_embeds is None:
|
660 |
-
input_embeds = self.transformer.wte(input_ids) # type: ignore # types broken in 2.6+
|
661 |
-
|
662 |
-
if self.emb_scale != 1:
|
663 |
-
input_embeds = input_embeds * self.emb_scale # type: ignore
|
664 |
-
|
665 |
-
if use_cache and past_key_values is None:
|
666 |
-
past_key_values = HuginnDynamicCache()
|
667 |
-
|
668 |
-
prepared_attn_mask = None # self.compile_mask(input_ids, attention_mask, past_key_values)
|
669 |
-
block_idx = torch.tensor(-1, device=torch.device("cpu"), dtype=torch.long) # count in tensors for compile
|
670 |
-
# Non-recurrent prelude
|
671 |
-
for block in self.transformer.prelude: # type: ignore # types broken in 2.6+
|
672 |
-
block_idx += 1
|
673 |
-
input_embeds = block(input_embeds, freqs_cis, block_idx, prepared_attn_mask, past_key_values)
|
674 |
-
|
675 |
-
# Main recurrence
|
676 |
-
x, num_steps_no_grad, num_steps_with_grad, xk, block_idx = self.iterate_forward(
|
677 |
-
input_embeds, # type: ignore # mystery typing error
|
678 |
-
input_states,
|
679 |
-
freqs_cis,
|
680 |
-
block_idx,
|
681 |
-
prepared_attn_mask,
|
682 |
-
past_key_values,
|
683 |
-
num_steps,
|
684 |
-
init_scale,
|
685 |
-
)
|
686 |
-
latent_states = x.clone().detach()
|
687 |
-
|
688 |
-
# Coda layers
|
689 |
-
block_idx = torch.tensor(0, device=torch.device("cpu"), dtype=torch.long) # use negative indices for head
|
690 |
-
for block in self.transformer.coda: # type: ignore # types broken in 2.6+
|
691 |
-
block_idx -= 1
|
692 |
-
x = block(x, freqs_cis, block_idx, prepared_attn_mask, past_key_values)
|
693 |
-
x = self.transformer.ln_f(x) # type: ignore # types broken in 2.6+
|
694 |
-
|
695 |
-
# Prediction head, assuming labels really are labels and not equal to input_ids
|
696 |
-
if labels is not None:
|
697 |
-
logits = self.lm_head(x).float()
|
698 |
-
loss = torch.nn.functional.cross_entropy(
|
699 |
-
logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=-100
|
700 |
-
)
|
701 |
-
log_ppl = loss.clone().detach().exp()
|
702 |
-
else:
|
703 |
-
logits = self.lm_head(x).float()
|
704 |
-
loss, log_ppl = torch.as_tensor(0.0), torch.as_tensor(0.0)
|
705 |
-
|
706 |
-
return CausalLMOutputRecurrentLatents(
|
707 |
-
loss=loss,
|
708 |
-
log_ppl=log_ppl,
|
709 |
-
logits=logits if output_details["return_logits"] else None,
|
710 |
-
past_key_values=past_key_values,
|
711 |
-
hidden_states=x if output_details["return_head"] else None,
|
712 |
-
latent_states=latent_states if output_details["return_latents"] else None,
|
713 |
-
stats=self.get_stats(logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad)
|
714 |
-
if output_details["return_stats"]
|
715 |
-
else None,
|
716 |
-
)
|
717 |
-
|
718 |
-
@torch._dynamo.disable(recursive=False) # type: ignore
|
719 |
-
def iterate_forward(
|
720 |
-
self,
|
721 |
-
input_embeds: torch.Tensor,
|
722 |
-
input_states: torch.Tensor,
|
723 |
-
freqs_cis,
|
724 |
-
block_idx: torch.Tensor,
|
725 |
-
mask: Optional[BlockMask],
|
726 |
-
past_key_values: Optional[ValidCache] = None,
|
727 |
-
num_steps: Optional[torch.Tensor] = None,
|
728 |
-
init_scale: float = 1.0,
|
729 |
-
):
|
730 |
-
x = xk = self.initialize_state(input_embeds, scale=init_scale) if input_states is None else input_states.clone()
|
731 |
-
if num_steps is None:
|
732 |
-
num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler() # type: ignore
|
733 |
-
elif hasattr(num_steps, "__len__") and len(num_steps) > 1:
|
734 |
-
num_steps_no_grad, num_steps_with_grad = num_steps
|
735 |
-
else:
|
736 |
-
num_steps_no_grad, num_steps_with_grad = num_steps, torch.tensor(0) if not x.is_meta else 0
|
737 |
-
|
738 |
-
with torch.no_grad():
|
739 |
-
# ultra annoying in ddp due to
|
740 |
-
# https://discuss.pytorch.org/t/does-distributeddataparallel-work-with-torch-no-grad-and-find-unused-parameters-false/122594
|
741 |
-
# for now running with find_unused_params=True enabled even though the graph structure is (technically) clear
|
742 |
-
# and all parameters are always used
|
743 |
-
for no_grad_step in range(num_steps_no_grad):
|
744 |
-
xk = x
|
745 |
-
x, block_idx = self.core_block_forward(
|
746 |
-
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, no_grad_step
|
747 |
-
)
|
748 |
-
|
749 |
-
for grad_step in range(num_steps_with_grad):
|
750 |
-
xk = x
|
751 |
-
x, block_idx = self.core_block_forward(
|
752 |
-
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, num_steps_no_grad + grad_step
|
753 |
-
)
|
754 |
-
return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach(), block_idx # type: ignore # types broken in 2.6+
|
755 |
-
|
756 |
-
def core_block_forward(
|
757 |
-
self,
|
758 |
-
x,
|
759 |
-
input_embeds,
|
760 |
-
freqs_cis,
|
761 |
-
mask: Optional[BlockMask],
|
762 |
-
past_key_values,
|
763 |
-
block_idx: torch.Tensor,
|
764 |
-
current_step: int | Tensor,
|
765 |
-
):
|
766 |
-
x = self._maybe_inject_noise(x, current_step)
|
767 |
-
x = self.transformer.adapter(torch.cat([x, input_embeds.to(x.device)], dim=-1)) # type: ignore # types broken in 2.6+
|
768 |
-
for block in self.transformer.core_block: # type: ignore # types broken in 2.6+
|
769 |
-
block_idx += 1
|
770 |
-
x = block(x, freqs_cis, block_idx, mask, past_key_values)
|
771 |
-
return x, block_idx
|
772 |
-
|
773 |
-
@torch.no_grad()
|
774 |
-
def iterate_one_step(
|
775 |
-
self,
|
776 |
-
input_embeds,
|
777 |
-
input_states,
|
778 |
-
position_ids: Optional[torch.Tensor] = None,
|
779 |
-
cache_position: Optional[torch.Tensor] = None,
|
780 |
-
block_idx: torch.Tensor = torch.tensor(0, dtype=torch.long),
|
781 |
-
attention_mask: Optional[BlockMask] = None,
|
782 |
-
past_key_values: Optional[ValidCache] = None,
|
783 |
-
current_step: int = 0,
|
784 |
-
):
|
785 |
-
if position_ids is None and cache_position is None:
|
786 |
-
freqs_cis = self.freqs_cis[:, : input_embeds.shape[1]]
|
787 |
-
elif position_ids is not None:
|
788 |
-
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
789 |
-
elif cache_position is not None:
|
790 |
-
freqs_cis = self.freqs_cis[:, cache_position]
|
791 |
-
x, block_idx = self.core_block_forward(
|
792 |
-
input_states,
|
793 |
-
input_embeds,
|
794 |
-
freqs_cis,
|
795 |
-
attention_mask,
|
796 |
-
past_key_values,
|
797 |
-
block_idx,
|
798 |
-
current_step=current_step,
|
799 |
-
)
|
800 |
-
return x, block_idx, current_step + 1
|
801 |
-
|
802 |
-
def predict_from_latents(
|
803 |
-
self,
|
804 |
-
latents,
|
805 |
-
attention_mask: Optional[BlockMask] = None,
|
806 |
-
position_ids: Optional[torch.Tensor] = None,
|
807 |
-
cache_position: Optional[torch.Tensor] = None,
|
808 |
-
past_key_values: Optional[ValidCache] = None,
|
809 |
-
):
|
810 |
-
if position_ids is None and cache_position is None:
|
811 |
-
freqs_cis = self.freqs_cis[:, : latents.shape[1]]
|
812 |
-
elif position_ids is not None:
|
813 |
-
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
814 |
-
elif cache_position is not None:
|
815 |
-
freqs_cis = self.freqs_cis[:, cache_position]
|
816 |
-
x = self.transformer.ln_f(latents) # type: ignore # types broken in 2.6+
|
817 |
-
# Coda layers
|
818 |
-
block_idx = torch.tensor(0, device=torch.device("cpu"), dtype=torch.long) # use negative indices for head
|
819 |
-
for block in self.transformer.coda: # type: ignore # types broken in 2.6+
|
820 |
-
block_idx -= 1
|
821 |
-
x = block(x, freqs_cis, block_idx, attention_mask, past_key_values)
|
822 |
-
x = self.transformer.ln_f(x) # type: ignore # types broken in 2.6+
|
823 |
-
|
824 |
-
logits = self.lm_head(x).float()
|
825 |
-
|
826 |
-
return CausalLMOutputRecurrentLatents(
|
827 |
-
loss=torch.as_tensor(0.0),
|
828 |
-
log_ppl=torch.as_tensor(0.0),
|
829 |
-
logits=logits,
|
830 |
-
past_key_values=past_key_values,
|
831 |
-
latent_states=x,
|
832 |
-
)
|
833 |
-
|
834 |
-
def embed_inputs(
|
835 |
-
self,
|
836 |
-
input_ids: torch.Tensor,
|
837 |
-
attention_mask: Optional[torch.Tensor] = None,
|
838 |
-
position_ids: Optional[torch.Tensor] = None,
|
839 |
-
past_key_values: Optional[ValidCache] = None,
|
840 |
-
use_cache: bool = False,
|
841 |
-
cache_position: Optional[torch.Tensor] = None,
|
842 |
-
**kwargs,
|
843 |
-
) -> tuple[torch.Tensor, torch.Tensor]:
|
844 |
-
# Support multiple position formats:
|
845 |
-
if position_ids is None and cache_position is None:
|
846 |
-
freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
|
847 |
-
elif position_ids is not None:
|
848 |
-
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
849 |
-
elif cache_position is not None:
|
850 |
-
freqs_cis = self.freqs_cis[:, cache_position]
|
851 |
-
|
852 |
-
input_embeds = self.transformer.wte(input_ids) # type: ignore # types broken in 2.6+
|
853 |
-
prepared_attn_mask = self.compile_mask(input_ids, attention_mask)
|
854 |
-
|
855 |
-
if self.emb_scale != 1:
|
856 |
-
input_embeds = input_embeds * self.emb_scale # type: ignore
|
857 |
-
|
858 |
-
if use_cache and past_key_values is None:
|
859 |
-
past_key_values = HuginnDynamicCache()
|
860 |
-
|
861 |
-
block_idx = torch.tensor(-1, device=torch.device("cpu"), dtype=torch.long) # count in tensors for compile
|
862 |
-
# Non-recurrent prelude
|
863 |
-
for block in self.transformer.prelude: # type: ignore # types broken in 2.6+
|
864 |
-
block_idx += 1
|
865 |
-
input_embeds = block(input_embeds, freqs_cis, block_idx, prepared_attn_mask, past_key_values)
|
866 |
-
return input_embeds, block_idx
|
867 |
-
|
868 |
-
@torch._dynamo.disable(recursive=False) # type: ignore
|
869 |
-
def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
|
870 |
-
"""Outputs are long tensors so that they can be passed through compiled functions"""
|
871 |
-
t = max(self.config.mean_recurrence - self.config.mean_backprop_depth, 0)
|
872 |
-
s = self.config.mean_backprop_depth
|
873 |
-
if torch.rand((1,)).is_meta: # annoying clause to make meta-tensor-based flop counting work
|
874 |
-
# these values are only the mean TFLOPs of the randomized sampler
|
875 |
-
# Note that this clause also breaks the contract, and returns ints in meta tensor mode
|
876 |
-
return t, s # type: ignore
|
877 |
-
if self.training:
|
878 |
-
sigma = 0.5
|
879 |
-
mu = math.log(t + s) - (sigma**2 / 2)
|
880 |
-
rate = torch.zeros((1,)).log_normal_(mean=mu, std=sigma)
|
881 |
-
p = torch.poisson(torch.tensor([rate], dtype=torch.float)) + 1
|
882 |
-
n = torch.clamp(p - s, min=0)
|
883 |
-
k = torch.as_tensor(torch.minimum(torch.as_tensor(s), p))
|
884 |
-
else:
|
885 |
-
n, k = torch.as_tensor(self.config.mean_recurrence), torch.as_tensor(0)
|
886 |
-
|
887 |
-
return n.to(dtype=torch.long), k.to(dtype=torch.long)
|
888 |
-
|
889 |
-
def initialize_state(self, input_embeds, scale: float = 1.0):
|
890 |
-
x = torch.randn_like(input_embeds)
|
891 |
-
std = self.config.init_values["std"] * scale
|
892 |
-
if std > 0:
|
893 |
-
torch.nn.init.trunc_normal_(x, mean=0.0, std=std, a=-3 * std, b=3 * std)
|
894 |
-
if self.emb_scale != 1:
|
895 |
-
x = x * self.emb_scale
|
896 |
-
else:
|
897 |
-
x.zero_()
|
898 |
-
return x
|
899 |
-
|
900 |
-
def _maybe_inject_noise(self, x, current_step, renorm=False):
|
901 |
-
if self.config.test_time_noise > 0:
|
902 |
-
n = self.config.test_time_noise * self.config.init_values["std"] * self.emb_scale
|
903 |
-
if self.config.test_time_noise_type == "geom":
|
904 |
-
step1 = torch.as_tensor(current_step + 1, device=x.device) # need to cast for compile
|
905 |
-
x = x * (1 - n / step1) + torch.randn_like(x) * n / step1
|
906 |
-
elif self.config.test_time_noise_type == "sqrt":
|
907 |
-
step1sqrt = torch.as_tensor(current_step + 1, device=x.device).sqrt() # need to cast for compile
|
908 |
-
x = x * (1 - n / step1sqrt) + torch.randn_like(x) * n / step1sqrt
|
909 |
-
elif self.config.test_time_noise_type == "line":
|
910 |
-
noise = max(n, (self.config.mean_recurrence - current_step) / self.config.mean_recurrence) # type: ignore
|
911 |
-
x = x * (1 - noise) + torch.randn_like(x) * noise
|
912 |
-
elif self.config.test_time_noise_type == "chi":
|
913 |
-
noise = 2 * torch.rand(1, device=x.device, dtype=x.dtype) * n
|
914 |
-
x = x * (1 - noise) + torch.randn_like(x) * noise
|
915 |
-
elif self.config.test_time_noise_type == "fixed":
|
916 |
-
x = x * (1 - n) + torch.randn_like(x) * n
|
917 |
-
else:
|
918 |
-
raise ValueError()
|
919 |
-
|
920 |
-
if renorm:
|
921 |
-
x = self.transformer.core_block[-1].norm_4(x) # type: ignore moduledict types still broken in pytorch
|
922 |
-
return x
|
923 |
-
|
924 |
-
def prepare_inputs_for_generation(
|
925 |
-
self,
|
926 |
-
input_ids: torch.Tensor,
|
927 |
-
past_key_values: Optional[Cache] = None,
|
928 |
-
attention_mask: Optional[torch.Tensor] = None,
|
929 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
930 |
-
cache_position: Optional[torch.Tensor] = None,
|
931 |
-
cache_lookup_strategy: str = "full",
|
932 |
**kwargs,
|
933 |
):
|
934 |
-
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
|
955 |
-
|
956 |
-
|
957 |
-
|
958 |
-
|
959 |
-
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
964 |
-
#
|
965 |
-
|
966 |
-
|
967 |
-
|
968 |
-
|
969 |
-
|
970 |
-
|
971 |
-
|
972 |
-
|
973 |
-
self.generation_config = args[1] if len(args) > 1 else self.generation_config
|
974 |
-
if any(k in kwargs for k in ("criterion", "exit_threshold")):
|
975 |
-
# print("Dispatching to custom generate_adaptive function call")
|
976 |
-
return self.generate_with_adaptive_compute(*args, **kwargs)
|
977 |
-
elif "continuous_compute" in kwargs:
|
978 |
-
# print("Dispatching to custom generate_minimal function call")
|
979 |
-
return self.generate_minimal(*args, **kwargs)
|
980 |
-
else:
|
981 |
-
return super().generate(*args, **kwargs)
|
982 |
-
|
983 |
-
@torch.no_grad()
|
984 |
-
def _prep_generate_args(
|
985 |
-
self,
|
986 |
-
input_ids: torch.Tensor,
|
987 |
-
generation_config: Optional[GenerationConfig] = None, # type: ignore
|
988 |
-
cache_lookup_strategy: str = "full",
|
989 |
-
model_kwargs: dict = {},
|
990 |
-
):
|
991 |
-
# Setup
|
992 |
-
if generation_config is None:
|
993 |
-
generation_config: GenerationConfig = self.generation_config # type: ignore
|
994 |
-
if "max_new_tokens" in model_kwargs:
|
995 |
-
max_new_tokens = model_kwargs["max_new_tokens"]
|
996 |
-
if "max_length" in model_kwargs:
|
997 |
-
max_new_tokens = min(max_new_tokens, model_kwargs["max_length"] - input_ids.shape[1])
|
998 |
-
else:
|
999 |
-
max_length = model_kwargs.get("max_length", generation_config.max_length)
|
1000 |
-
max_new_tokens = max_length - input_ids.shape[1]
|
1001 |
-
|
1002 |
-
if "cache_implementation" not in model_kwargs or model_kwargs["cache_implementation"] == "dynamic":
|
1003 |
-
model_kwargs["past_key_values"] = HuginnDynamicCache(lookup_strategy=cache_lookup_strategy)
|
1004 |
-
else:
|
1005 |
-
model_kwargs["past_key_values"] = HuginnStaticCache(
|
1006 |
-
max_length=max_length,
|
1007 |
-
max_num_steps=4 + model_kwargs.get("num_steps", self.config.mean_recurrence) * 4,
|
1008 |
-
num_heads=self.config.num_key_value_heads,
|
1009 |
-
hidden_dim=self.config.n_embd // self.config.num_attention_heads,
|
1010 |
-
batch_size=input_ids.shape[0],
|
1011 |
-
dtype=torch.bfloat16,
|
1012 |
-
device=input_ids.device,
|
1013 |
-
lookup_strategy=cache_lookup_strategy,
|
1014 |
-
)
|
1015 |
-
model_kwargs["use_cache"] = True
|
1016 |
-
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
|
1017 |
-
return model_kwargs, generation_config, max_new_tokens
|
1018 |
-
|
1019 |
-
@torch.no_grad()
|
1020 |
-
def generate_minimal(
|
1021 |
-
self,
|
1022 |
-
input_ids: torch.Tensor,
|
1023 |
-
generation_config: Optional[GenerationConfig] = None, # type: ignore
|
1024 |
-
tokenizer=None,
|
1025 |
-
streamer=None,
|
1026 |
-
continuous_compute=False, # warm-start state / continuous CoT
|
1027 |
-
init_scale: float = 1.0,
|
1028 |
-
cache_lookup_strategy: str = "full",
|
1029 |
-
**model_kwargs,
|
1030 |
-
) -> Union[torch.Tensor, dict[str, Any]]:
|
1031 |
-
"""Minimal single-sequence generation. Template for more complicated generate tasks"""
|
1032 |
-
model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
|
1033 |
-
input_ids, generation_config, cache_lookup_strategy
|
1034 |
-
)
|
1035 |
-
stop_tokens = self._get_stops(generation_config, tokenizer, model_kwargs).to(input_ids.device)
|
1036 |
-
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
1037 |
-
|
1038 |
-
# Set up continuous compute if enabled
|
1039 |
-
if continuous_compute:
|
1040 |
-
embedded_inputs, _ = self.embed_inputs(input_ids)
|
1041 |
-
model_kwargs["input_states"] = self.initialize_state(embedded_inputs, scale=init_scale)
|
1042 |
-
|
1043 |
-
# Generate tokens
|
1044 |
-
batch_size = input_ids.shape[0]
|
1045 |
-
for _ in range(max_new_tokens):
|
1046 |
-
# Forward pass
|
1047 |
-
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1048 |
-
outputs = self(**model_inputs, init_scale=init_scale)
|
1049 |
-
|
1050 |
-
# Get next token
|
1051 |
-
next_token_logits = outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32, device=input_ids.device)
|
1052 |
-
next_token = self._sample_next_token(next_token_logits, generation_config)
|
1053 |
-
|
1054 |
-
# Append token to sequence
|
1055 |
-
input_ids = torch.cat([input_ids, next_token], dim=-1)
|
1056 |
-
|
1057 |
-
if streamer:
|
1058 |
-
streamer.put(next_token.cpu())
|
1059 |
-
|
1060 |
-
# Update model kwargs
|
1061 |
-
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
|
1062 |
-
if continuous_compute:
|
1063 |
-
model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]
|
1064 |
-
|
1065 |
-
if stop_tokens is not None:
|
1066 |
-
for i in range(batch_size):
|
1067 |
-
if unfinished_sequences[i] and next_token[i, 0].item() in stop_tokens:
|
1068 |
-
unfinished_sequences[i] = 0
|
1069 |
-
if "stopping_criteria" in model_kwargs:
|
1070 |
-
unfinished_sequences = unfinished_sequences & ~model_kwargs["stopping_criteria"](input_ids, None)
|
1071 |
-
if unfinished_sequences.max() == 0:
|
1072 |
-
break
|
1073 |
-
|
1074 |
-
if streamer:
|
1075 |
-
streamer.end()
|
1076 |
-
|
1077 |
-
if generation_config.return_dict_in_generate:
|
1078 |
-
return GenerateDecoderOnlyOutput(
|
1079 |
-
sequences=input_ids, # type: ignore
|
1080 |
-
scores=None,
|
1081 |
-
logits=None,
|
1082 |
-
attentions=None,
|
1083 |
-
hidden_states=None,
|
1084 |
-
past_key_values=model_kwargs.get("past_key_values"),
|
1085 |
-
)
|
1086 |
-
return input_ids
|
1087 |
-
|
1088 |
-
@torch.no_grad()
|
1089 |
-
def generate_with_adaptive_compute(
|
1090 |
-
self,
|
1091 |
-
input_ids: torch.Tensor,
|
1092 |
-
generation_config: Optional[GenerationConfig] = None, # type: ignore
|
1093 |
-
tokenizer=None,
|
1094 |
-
streamer=None,
|
1095 |
-
continuous_compute=False, # warm-start state / continuous CoT
|
1096 |
-
criterion="none", # off by default, turn on by choosing an exit criterion
|
1097 |
-
exit_threshold: Union[str, float, int] = "auto",
|
1098 |
-
init_scale: float = 1.0,
|
1099 |
-
cache_lookup_strategy: str = "full",
|
1100 |
-
**model_kwargs,
|
1101 |
-
) -> Union[torch.Tensor, GenerateDecoderOnlyOutput]:
|
1102 |
-
"""
|
1103 |
-
Generate tokens with adaptive compute. This is NOT the most efficient implementation.
|
1104 |
-
For batches, on each token, we iterate until the entire batch finishes.
|
1105 |
-
"""
|
1106 |
-
model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
|
1107 |
-
input_ids, generation_config, cache_lookup_strategy, model_kwargs
|
1108 |
-
)
|
1109 |
-
max_steps = model_kwargs.get("num_steps", self.config.mean_recurrence)
|
1110 |
-
stop_tokens = self._get_stops(generation_config, tokenizer, model_kwargs).to(input_ids.device)
|
1111 |
-
logit_type = dict(copy=True, dtype=torch.float32, device=input_ids.device)
|
1112 |
-
batch_size = input_ids.shape[0]
|
1113 |
-
compute_steps = []
|
1114 |
-
|
1115 |
-
# Set up continuous compute if enabled
|
1116 |
-
if continuous_compute:
|
1117 |
-
embedded_inputs, _ = self.embed_inputs(input_ids)
|
1118 |
-
model_kwargs["input_states"] = self.initialize_state(embedded_inputs, scale=init_scale)
|
1119 |
-
|
1120 |
-
# Track which sequences have finished (using unfinished_sequences to match generate_minimal)
|
1121 |
-
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
|
1122 |
-
|
1123 |
-
# Generate tokens
|
1124 |
-
for _ in range(max_new_tokens):
|
1125 |
-
# Adaptive compute forward
|
1126 |
-
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1127 |
-
aux_inputs = {
|
1128 |
-
k: model_inputs[k] for k in ["cache_position", "past_key_values", "attention_mask"] if k in model_inputs
|
1129 |
-
}
|
1130 |
-
embedded_inputs, block_idx = self.embed_inputs(model_inputs["input_ids"], **aux_inputs)
|
1131 |
-
current_latents = (
|
1132 |
-
self.initialize_state(embedded_inputs, scale=init_scale)
|
1133 |
-
if not continuous_compute
|
1134 |
-
else model_kwargs["input_states"]
|
1135 |
-
)
|
1136 |
-
|
1137 |
-
# Initialize criterion tracking for each sequence in batch
|
1138 |
-
exit_values_per_seq = [[] for _ in range(batch_size)]
|
1139 |
-
compute_steps_per_seq = [0] * batch_size
|
1140 |
-
exit_reached = torch.zeros(batch_size, dtype=torch.bool, device=input_ids.device)
|
1141 |
-
|
1142 |
-
# Set up criterions based on selected strategy
|
1143 |
-
if criterion == "entropy-diff":
|
1144 |
-
entropy = torch.ones(batch_size, device=input_ids.device) * 100.0
|
1145 |
-
exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)
|
1146 |
-
elif criterion == "latent-diff":
|
1147 |
-
exit_threshold = 0.03 if exit_threshold == "auto" else float(exit_threshold)
|
1148 |
-
elif "kl" in criterion:
|
1149 |
-
V = self.config.padded_vocab_size
|
1150 |
-
log_probs = ((1 / V) * torch.ones(batch_size, V, dtype=torch.float, device=input_ids.device)).log()
|
1151 |
-
if criterion == "minp-kl":
|
1152 |
-
exit_threshold = 1e-6 if exit_threshold == "auto" else float(exit_threshold)
|
1153 |
-
else:
|
1154 |
-
exit_threshold = 5e-4 if exit_threshold == "auto" else float(exit_threshold)
|
1155 |
-
elif criterion == "argmax-stability":
|
1156 |
-
stable_for_n_steps = torch.zeros(batch_size, dtype=torch.long, device=input_ids.device)
|
1157 |
-
current_argmax = torch.ones(batch_size, dtype=torch.long, device=input_ids.device) * -1
|
1158 |
-
exit_threshold = 5 if exit_threshold == "auto" else int(exit_threshold)
|
1159 |
-
elif criterion == "none":
|
1160 |
-
exit_threshold = 1.0 if exit_threshold == "auto" else float(exit_threshold)
|
1161 |
-
else:
|
1162 |
-
raise ValueError("Invalid adaptive compute strategy.")
|
1163 |
-
|
1164 |
-
next_token_logits = None
|
1165 |
-
|
1166 |
-
# Iterate through compute steps
|
1167 |
-
for compute_step in range(max_steps):
|
1168 |
-
prev_latents = current_latents.clone()
|
1169 |
-
current_latents, block_idx, _ = self.iterate_one_step(
|
1170 |
-
embedded_inputs,
|
1171 |
-
current_latents,
|
1172 |
-
block_idx=block_idx,
|
1173 |
-
**aux_inputs,
|
1174 |
-
current_step=compute_step,
|
1175 |
-
)
|
1176 |
-
|
1177 |
-
if _ > 0: # do not exit in prefill
|
1178 |
-
# Check exit condition for each sequence in batch
|
1179 |
-
if criterion == "entropy-diff":
|
1180 |
-
prev_entropy = entropy
|
1181 |
-
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
1182 |
-
logits: torch.Tensor = outputs.logits # type: ignore
|
1183 |
-
probs = F.softmax(logits[:, -1, :], dim=-1)
|
1184 |
-
entropy = -torch.sum(probs * torch.log(probs + 1e-10), dim=-1)
|
1185 |
-
exit_values = (entropy - prev_entropy).abs()
|
1186 |
-
elif criterion == "latent-diff":
|
1187 |
-
norm_diff = (prev_latents - current_latents).norm(dim=-1) / current_latents.norm(dim=-1)
|
1188 |
-
exit_values = norm_diff.mean(dim=-1)
|
1189 |
-
elif "kl" in criterion:
|
1190 |
-
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
1191 |
-
logits: torch.Tensor = outputs.logits # type: ignore
|
1192 |
-
prev_log_probs = log_probs
|
1193 |
-
if criterion == "minp-kl":
|
1194 |
-
probs = F.softmax(logits[:, -1, :].float(), dim=-1)
|
1195 |
-
max_probs = probs.max(dim=-1, keepdim=True)[0]
|
1196 |
-
probs_mask = probs < (0.1 * max_probs)
|
1197 |
-
masked_probs = probs.clone()
|
1198 |
-
masked_probs[probs_mask] = 1 / V
|
1199 |
-
probs = masked_probs / masked_probs.sum(dim=-1, keepdim=True)
|
1200 |
-
log_probs = probs.log()
|
1201 |
-
else:
|
1202 |
-
log_probs = F.log_softmax(logits[:, -1, :].float(), dim=-1)
|
1203 |
-
exit_values = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
|
1204 |
-
elif criterion == "argmax-stability":
|
1205 |
-
prev_argmax = current_argmax
|
1206 |
-
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
1207 |
-
logits: torch.Tensor = outputs.logits # type: ignore
|
1208 |
-
current_argmax = logits[:, -1, :].argmax(dim=-1)
|
1209 |
-
stable_for_n_steps = torch.where(
|
1210 |
-
current_argmax == prev_argmax, stable_for_n_steps + 1, torch.zeros_like(stable_for_n_steps)
|
1211 |
-
)
|
1212 |
-
exit_values = stable_for_n_steps
|
1213 |
-
elif criterion == "none":
|
1214 |
-
exit_values = torch.ones(batch_size, device=input_ids.device) * 2.0 * exit_threshold
|
1215 |
-
|
1216 |
-
# Record values and check exits for each sequence
|
1217 |
-
for i in range(batch_size):
|
1218 |
-
if not exit_reached[i] and unfinished_sequences[i].bool():
|
1219 |
-
exit_values_per_seq[i].append(exit_values[i].item())
|
1220 |
-
|
1221 |
-
# Check for new exits, respecting unfinished_sequences
|
1222 |
-
new_exits = (
|
1223 |
-
exit_values < exit_threshold
|
1224 |
-
if criterion != "argmax-stability"
|
1225 |
-
else exit_values >= exit_threshold
|
1226 |
-
)
|
1227 |
-
new_exits = new_exits & ~exit_reached & unfinished_sequences.bool()
|
1228 |
-
|
1229 |
-
if new_exits.any():
|
1230 |
-
exit_reached = exit_reached | new_exits
|
1231 |
-
if criterion == "latent-diff":
|
1232 |
-
# Normally we don't compute the output for latent-diff, but when there is an exit,
|
1233 |
-
# we need to compute and save the output
|
1234 |
-
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
1235 |
-
logits: torch.Tensor = outputs.logits # type: ignore
|
1236 |
-
if next_token_logits is None:
|
1237 |
-
next_token_logits = logits[:, -1, :].to(**logit_type) # type: ignore
|
1238 |
-
else:
|
1239 |
-
for i in range(batch_size):
|
1240 |
-
if new_exits[i]:
|
1241 |
-
next_token_logits[i] = logits[i, -1, :].to(**logit_type) # type: ignore
|
1242 |
-
for i in range(batch_size):
|
1243 |
-
if new_exits[i]:
|
1244 |
-
compute_steps_per_seq[i] = compute_step + 1
|
1245 |
-
|
1246 |
-
# If all sequences have exited or finished, break early
|
1247 |
-
if (exit_reached | ~unfinished_sequences.bool()).all():
|
1248 |
-
break
|
1249 |
-
# This else is if the for loop finished without breaking
|
1250 |
-
else:
|
1251 |
-
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
1252 |
-
|
1253 |
-
# For sequences that didn't exit early, use the final logits
|
1254 |
-
if next_token_logits is None:
|
1255 |
-
next_token_logits = outputs.logits[:, -1, :].to(**logit_type) # type: ignore
|
1256 |
-
else:
|
1257 |
-
for i in range(batch_size):
|
1258 |
-
if not exit_reached[i] and unfinished_sequences[i].bool():
|
1259 |
-
next_token_logits[i] = outputs.logits[i, -1, :].to(**logit_type) # type: ignore
|
1260 |
-
compute_steps_per_seq[i] = max_steps
|
1261 |
-
|
1262 |
-
# Save latent states for continuous compute if enabled
|
1263 |
-
if continuous_compute:
|
1264 |
-
model_kwargs["input_states"] = current_latents[:, -1:, :]
|
1265 |
-
|
1266 |
-
# Record compute steps for this token generation
|
1267 |
-
compute_steps.append([compute_steps_per_seq, exit_values_per_seq])
|
1268 |
-
|
1269 |
-
# Sample or select next token based on generation config
|
1270 |
-
next_token = self._sample_next_token(next_token_logits, generation_config)
|
1271 |
-
|
1272 |
-
# Append token to sequence
|
1273 |
-
input_ids = torch.cat([input_ids, next_token], dim=-1)
|
1274 |
-
|
1275 |
-
if streamer:
|
1276 |
-
streamer.put(next_token.cpu())
|
1277 |
-
|
1278 |
-
# Update model kwargs for next iteration
|
1279 |
-
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
|
1280 |
-
|
1281 |
-
# Check for stop tokens and update unfinished sequences
|
1282 |
-
for i in range(batch_size):
|
1283 |
-
if (
|
1284 |
-
unfinished_sequences[i].bool()
|
1285 |
-
and stop_tokens is not None
|
1286 |
-
and next_token[i, 0].item() in stop_tokens
|
1287 |
-
):
|
1288 |
-
unfinished_sequences[i] = 0
|
1289 |
-
|
1290 |
-
# Apply any custom stopping criteria
|
1291 |
-
if "stopping_criteria" in model_kwargs:
|
1292 |
-
unfinished_sequences = unfinished_sequences & ~model_kwargs["stopping_criteria"](input_ids, None)
|
1293 |
-
|
1294 |
-
# Break if all sequences are finished
|
1295 |
-
if unfinished_sequences.max() == 0:
|
1296 |
-
break
|
1297 |
-
|
1298 |
-
if streamer:
|
1299 |
-
streamer.end()
|
1300 |
-
|
1301 |
-
if generation_config.return_dict_in_generate:
|
1302 |
-
return GenerateDecoderOnlyOutput(
|
1303 |
-
sequences=input_ids, # type: ignore
|
1304 |
-
scores=compute_steps, # type: ignore
|
1305 |
-
logits=None,
|
1306 |
-
attentions=None,
|
1307 |
-
hidden_states=None,
|
1308 |
-
past_key_values=model_kwargs.get("past_key_values"),
|
1309 |
-
)
|
1310 |
-
return input_ids
|
1311 |
-
|
1312 |
-
def _get_stops(self, generation_config, tokenizer, model_kwargs):
|
1313 |
-
stop_tokens = {65504, 65505, 65508} # begin_text, end_text, end_turn
|
1314 |
-
if generation_config.eos_token_id is not None:
|
1315 |
-
stop_tokens.add(generation_config.eos_token_id)
|
1316 |
-
if "stopping_criteria" in model_kwargs and tokenizer is None:
|
1317 |
-
tokenizer = model_kwargs["stopping_criteria"][0].tokenizer
|
1318 |
-
if hasattr(generation_config, "stop_strings") and tokenizer and generation_config.stop_strings:
|
1319 |
-
for s in generation_config.stop_strings:
|
1320 |
-
token_id = tokenizer(s, add_special_tokens=False)["input_ids"][0]
|
1321 |
-
stop_tokens.add(token_id)
|
1322 |
-
return torch.tensor(list(stop_tokens))
|
1323 |
-
|
1324 |
-
def _sample_next_token(self, next_token_logits, generation_config):
|
1325 |
-
"""Helper function to sample the next token."""
|
1326 |
-
if generation_config.do_sample:
|
1327 |
-
if generation_config.temperature:
|
1328 |
-
next_token_logits = next_token_logits.float() / generation_config.temperature
|
1329 |
-
|
1330 |
-
probs = F.softmax(next_token_logits, dim=-1)
|
1331 |
-
|
1332 |
-
# Apply top_k
|
1333 |
-
if generation_config.top_k:
|
1334 |
-
top_k_values, _ = torch.topk(probs, generation_config.top_k, dim=-1)
|
1335 |
-
min_values = top_k_values[:, -1].unsqueeze(-1).expand_as(probs)
|
1336 |
-
probs = torch.where(probs < min_values, torch.zeros_like(probs), probs)
|
1337 |
-
|
1338 |
-
# Apply top_p (nucleus sampling)
|
1339 |
-
if generation_config.top_p:
|
1340 |
-
sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=-1)
|
1341 |
-
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
1342 |
-
|
1343 |
-
# Create mask for probs to keep
|
1344 |
-
remove_indices = cumulative_probs > generation_config.top_p
|
1345 |
-
remove_indices[:, 0] = False # Keep at least the top probability
|
1346 |
-
|
1347 |
-
# Convert sorted indices mask back to original indices mask
|
1348 |
-
mask = torch.zeros_like(probs, dtype=torch.bool)
|
1349 |
-
for i in range(probs.shape[0]):
|
1350 |
-
mask[i, sorted_indices[i, remove_indices[i]]] = True
|
1351 |
-
|
1352 |
-
probs = torch.where(mask, torch.zeros_like(probs), probs)
|
1353 |
-
|
1354 |
-
# Apply min_p
|
1355 |
-
if generation_config.min_p:
|
1356 |
-
max_probs = probs.max(dim=-1, keepdim=True)[0]
|
1357 |
-
min_p_threshold = generation_config.min_p * max_probs
|
1358 |
-
probs = torch.where(probs < min_p_threshold, torch.zeros_like(probs), probs)
|
1359 |
-
|
1360 |
-
# Renormalize probabilities
|
1361 |
-
probs = probs / probs.sum(dim=-1, keepdim=True).clamp(min=1e-10)
|
1362 |
-
|
1363 |
-
# Sample from the distribution
|
1364 |
-
return torch.multinomial(probs, num_samples=1)
|
1365 |
-
else:
|
1366 |
-
return torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
1367 |
-
|
1368 |
-
@torch.no_grad()
|
1369 |
-
def generate_speculative(
|
1370 |
-
self,
|
1371 |
-
input_ids: torch.Tensor,
|
1372 |
-
generation_config: Optional[GenerationConfig] = None, # type: ignore
|
1373 |
-
tokenizer=None,
|
1374 |
-
streamer=None,
|
1375 |
-
continuous_compute=False, # warm-start state / continuous CoT
|
1376 |
-
init_scale: float = 1.0,
|
1377 |
-
cache_lookup_strategy: str = "full",
|
1378 |
-
draft_steps=32,
|
1379 |
-
lookahead_for_draft=8,
|
1380 |
-
verification_threshold=1,
|
1381 |
-
num_steps: int = 32, # intercept deliberately
|
1382 |
-
**model_kwargs,
|
1383 |
-
) -> Union[torch.Tensor, dict[str, Any]]:
|
1384 |
-
"""Batched speculative decoding with per-sequence acceptance."""
|
1385 |
-
assert lookahead_for_draft > 0
|
1386 |
-
pad_id = 65509
|
1387 |
-
model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
|
1388 |
-
input_ids, generation_config, cache_lookup_strategy, model_kwargs
|
1389 |
)
|
1390 |
-
|
1391 |
-
|
1392 |
-
|
1393 |
-
|
1394 |
-
|
1395 |
-
embedded_inputs, _ = self.embed_inputs(input_ids)
|
1396 |
-
model_kwargs["input_states"] = self.initialize_state(embedded_inputs, scale=init_scale)
|
1397 |
-
|
1398 |
-
tokens_generated = 0
|
1399 |
-
# Prefill cache with full num_steps
|
1400 |
-
if model_kwargs["past_key_values"].get_seq_length() == 0:
|
1401 |
-
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1402 |
-
outputs = self(**model_inputs, num_steps=num_steps, init_scale=init_scale)
|
1403 |
-
next_token = self._sample_next_token(
|
1404 |
-
outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32), generation_config
|
1405 |
-
)
|
1406 |
-
input_ids = torch.cat([input_ids, next_token], dim=-1)
|
1407 |
-
tokens_generated += 1
|
1408 |
-
if streamer:
|
1409 |
-
streamer.put(next_token.cpu())
|
1410 |
-
model_kwargs["cache_position"] = torch.as_tensor(
|
1411 |
-
[model_inputs["past_key_values"].get_seq_length()], device=input_ids.device
|
1412 |
-
)
|
1413 |
-
if continuous_compute:
|
1414 |
-
model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]
|
1415 |
-
|
1416 |
-
# Generate tokens
|
1417 |
-
batch_size, prefix_seq_len = input_ids.shape[0], input_ids.shape[1]
|
1418 |
-
accepted_tokens = []
|
1419 |
-
|
1420 |
-
while tokens_generated < max_new_tokens:
|
1421 |
-
### Run the next draft ####
|
1422 |
-
drafted_inputs = input_ids.clone()
|
1423 |
-
current_len = input_ids.shape[1]
|
1424 |
-
|
1425 |
-
for _ in range(lookahead_for_draft):
|
1426 |
-
model_inputs = self.prepare_inputs_for_generation(drafted_inputs, **model_kwargs)
|
1427 |
-
outputs = self(**model_inputs, num_steps=draft_steps, init_scale=init_scale)
|
1428 |
-
next_token_logits = outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32)
|
1429 |
-
next_token = self._sample_next_token(next_token_logits, generation_config)
|
1430 |
-
drafted_inputs = torch.cat([drafted_inputs, next_token], dim=-1)
|
1431 |
-
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + 1
|
1432 |
-
if continuous_compute:
|
1433 |
-
model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]
|
1434 |
-
|
1435 |
-
model_kwargs["past_key_values"].clear_last_k_entries(lookahead_for_draft)
|
1436 |
-
|
1437 |
-
## Verify drafted tokens ###
|
1438 |
-
model_kwargs["cache_position"] = torch.arange(
|
1439 |
-
current_len - 1, current_len + lookahead_for_draft - 1, device=input_ids.device
|
1440 |
-
)
|
1441 |
-
model_inputs = self.prepare_inputs_for_generation(drafted_inputs, **model_kwargs)
|
1442 |
-
outputs = self(**model_inputs, num_steps=num_steps, init_scale=init_scale)
|
1443 |
-
verified_next_token_preds = outputs.logits.argmax(dim=-1)
|
1444 |
-
|
1445 |
-
if verification_threshold >= 1:
|
1446 |
-
mismatched_tokens = (
|
1447 |
-
verified_next_token_preds[:, -lookahead_for_draft:] != drafted_inputs[:, current_len:]
|
1448 |
-
)
|
1449 |
-
not_all_matched, first_mismatch = torch.max(mismatched_tokens, dim=1)
|
1450 |
-
else:
|
1451 |
-
verified_logits = outputs.logits[:, -lookahead_for_draft:, :]
|
1452 |
-
verified_probs = F.softmax(verified_logits, dim=-1)
|
1453 |
-
drafted_token_probs = torch.gather(
|
1454 |
-
verified_probs, -1, drafted_inputs[:, current_len:].unsqueeze(-1)
|
1455 |
-
).squeeze(-1)
|
1456 |
-
max_probs = verified_probs.max(dim=-1)[0]
|
1457 |
-
verification_passed = drafted_token_probs >= verification_threshold * max_probs
|
1458 |
-
not_all_matched, first_mismatch = torch.max(~verification_passed, dim=1)
|
1459 |
-
|
1460 |
-
# Per-sequence acceptance handling
|
1461 |
-
acceptance_lengths = torch.where(not_all_matched, first_mismatch, lookahead_for_draft)
|
1462 |
-
|
1463 |
-
# Build next_tokens for each sequence
|
1464 |
-
next_tokens_batch = []
|
1465 |
-
for i in range(batch_size):
|
1466 |
-
seq_acceptance = acceptance_lengths[i].item()
|
1467 |
-
if not_all_matched[i] and seq_acceptance < lookahead_for_draft:
|
1468 |
-
# Accept up to mismatch + sample final token
|
1469 |
-
accepted_part = drafted_inputs[i : i + 1, current_len : current_len + seq_acceptance]
|
1470 |
-
final_token_logits = outputs.logits[i : i + 1, seq_acceptance, :].to(copy=True, dtype=torch.float32)
|
1471 |
-
final_token = self._sample_next_token(final_token_logits, generation_config)
|
1472 |
-
seq_tokens = torch.cat([accepted_part, final_token], dim=-1) if seq_acceptance > 0 else final_token
|
1473 |
-
else:
|
1474 |
-
# Accept all drafted tokens
|
1475 |
-
seq_tokens = drafted_inputs[i : i + 1, current_len : current_len + seq_acceptance]
|
1476 |
-
next_tokens_batch.append(seq_tokens)
|
1477 |
-
|
1478 |
-
# Clean up KV cache - only if any sequence had mismatches
|
1479 |
-
if not_all_matched.any():
|
1480 |
-
min_first_mismatch = first_mismatch.min().item()
|
1481 |
-
model_inputs["past_key_values"].clear_last_k_entries(lookahead_for_draft - min_first_mismatch - 1)
|
1482 |
-
|
1483 |
-
# Concatenate accepted tokens to input_ids
|
1484 |
-
batch_accepted_counts = [tokens.shape[1] for tokens in next_tokens_batch]
|
1485 |
-
max_len = max(batch_accepted_counts)
|
1486 |
-
padded_tokens = [
|
1487 |
-
torch.cat(
|
1488 |
-
[
|
1489 |
-
tokens,
|
1490 |
-
pad_id * torch.ones((1, max_len - tokens.shape[1]), dtype=tokens.dtype, device=tokens.device),
|
1491 |
-
],
|
1492 |
-
dim=-1,
|
1493 |
-
)
|
1494 |
-
if tokens.shape[1] < max_len
|
1495 |
-
else tokens
|
1496 |
-
for tokens in next_tokens_batch
|
1497 |
-
]
|
1498 |
-
next_tokens = torch.cat(padded_tokens, dim=0)
|
1499 |
-
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
1500 |
-
|
1501 |
-
accepted_tokens.append(batch_accepted_counts)
|
1502 |
-
tokens_generated += max(batch_accepted_counts)
|
1503 |
-
|
1504 |
-
if streamer:
|
1505 |
-
streamer.put(next_tokens_batch[0].cpu())
|
1506 |
-
|
1507 |
-
model_kwargs["cache_position"] = torch.as_tensor(
|
1508 |
-
[model_inputs["past_key_values"].get_seq_length()], device=input_ids.device
|
1509 |
-
)
|
1510 |
-
if continuous_compute:
|
1511 |
-
model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]
|
1512 |
-
|
1513 |
-
# Check stopping conditions
|
1514 |
-
if stop_tokens is not None:
|
1515 |
-
for i in range(batch_size):
|
1516 |
-
if unfinished_sequences[i] and torch.isin(next_tokens_batch[i], stop_tokens).any():
|
1517 |
-
unfinished_sequences[i] = 0
|
1518 |
-
if "stopping_criteria" in model_kwargs:
|
1519 |
-
unfinished_sequences = unfinished_sequences & ~model_kwargs["stopping_criteria"](input_ids, None)
|
1520 |
-
if unfinished_sequences.max() == 0:
|
1521 |
-
break
|
1522 |
-
|
1523 |
-
if streamer:
|
1524 |
-
streamer.end()
|
1525 |
-
|
1526 |
-
# Cut off extraneous parts of the sequence per batch element
|
1527 |
-
if stop_tokens is not None:
|
1528 |
-
for i in range(batch_size):
|
1529 |
-
stop_positions = torch.isin(input_ids[i, prefix_seq_len:], stop_tokens).nonzero()
|
1530 |
-
if len(stop_positions) > 0:
|
1531 |
-
input_ids[i, prefix_seq_len + stop_positions[0].item() + 1 :] = pad_id
|
1532 |
-
# Trim tensor to remove columns that are pad_id across all sequences
|
1533 |
-
non_pad_mask = input_ids != pad_id
|
1534 |
-
last_real_token = non_pad_mask.any(dim=0).nonzero()
|
1535 |
-
if len(last_real_token) > 0:
|
1536 |
-
input_ids = input_ids[:, : last_real_token[-1].item() + 1]
|
1537 |
-
|
1538 |
-
if generation_config.return_dict_in_generate:
|
1539 |
-
return GenerateDecoderOnlyOutput(
|
1540 |
-
sequences=input_ids, # type: ignore
|
1541 |
-
scores=accepted_tokens, # type: ignore
|
1542 |
-
logits=None,
|
1543 |
-
attentions=None,
|
1544 |
-
hidden_states=None,
|
1545 |
-
past_key_values=model_kwargs.get("past_key_values"),
|
1546 |
-
)
|
1547 |
-
return input_ids
|
1548 |
-
|
1549 |
-
def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
|
1550 |
-
probs = torch.softmax(logits.float(), dim=-1)
|
1551 |
-
prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
|
1552 |
-
residual_diff = (x - latent_states).norm(dim=-1)
|
1553 |
-
rel_residual = residual_diff / latent_states.norm(dim=-1)
|
1554 |
-
stats = {
|
1555 |
-
"entropy": prob_entropy,
|
1556 |
-
"residual_diff": residual_diff,
|
1557 |
-
"rel_residual": rel_residual,
|
1558 |
-
"num_steps_no_grad": num_steps_no_grad,
|
1559 |
-
"num_steps_with_grad": num_steps_with_grad,
|
1560 |
}
|
1561 |
-
return stats
|
1562 |
-
|
1563 |
-
|
1564 |
-
#################################### Utils #######################################################################
|
1565 |
-
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, condense_ratio: int = 1):
|
1566 |
-
with torch.autocast("cuda", enabled=False):
|
1567 |
-
inv_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
1568 |
-
t = torch.arange(end, dtype=torch.float32, device=inv_freqs.device) / condense_ratio
|
1569 |
-
freqs = torch.outer(t, inv_freqs).float()
|
1570 |
-
return torch.stack([torch.cos(freqs)[None, :, None, :], torch.sin(freqs)[None, :, None, :]], dim=4)
|
1571 |
-
# equivalent to
|
1572 |
-
# freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
1573 |
-
# cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
|
1574 |
-
|
1575 |
|
1576 |
-
|
1577 |
-
|
1578 |
-
|
1579 |
-
|
1580 |
-
|
1581 |
-
|
1582 |
-
|
1583 |
-
],
|
1584 |
-
-1,
|
1585 |
-
).flatten(3)
|
1586 |
-
rotated_qk = rotated_qk_r2
|
1587 |
-
return torch.split(rotated_qk.type_as(q), q.shape[2], dim=2) # type: ignore
|
1588 |
-
|
1589 |
-
|
1590 |
-
#################################### HF registration ############################################################
|
1591 |
-
|
1592 |
-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
1593 |
-
|
1594 |
-
# New
|
1595 |
-
RavenConfig.register_for_auto_class()
|
1596 |
-
|
1597 |
-
RavenForCausalLM.register_for_auto_class("AutoModel")
|
1598 |
-
RavenForCausalLM.register_for_auto_class("AutoModelForCausalLM")
|
1599 |
-
|
1600 |
-
# Old?
|
1601 |
-
AutoConfig.register("huginn_raven", RavenConfig)
|
1602 |
-
AutoModel.register(RavenConfig, RavenForCausalLM)
|
1603 |
-
AutoModelForCausalLM.register(RavenConfig, RavenForCausalLM)
|
|
|
1 |
+
"""A HuggingFace-style model configuration."""
|
2 |
|
3 |
+
from transformers import PretrainedConfig
|
4 |
+
from math import sqrt
|
5 |
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
class RavenConfig(PretrainedConfig):
|
8 |
+
model_type = "huginn_raven"
|
9 |
+
keys_to_ignore_at_inference = [""]
|
10 |
+
attribute_map = {"num_attention_heads": "n_heads", "hidden_size": "n_embd", "num_hidden_layers": "n_layers"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def __init__(
|
13 |
self,
|
14 |
+
n_embd: int = 5280,
|
15 |
+
n_heads: int = 55,
|
16 |
+
n_layers: int = 8, # total of prelude + recurrent + coda
|
17 |
+
block_size: int = 4096,
|
18 |
+
vocab_size: int = 65536,
|
19 |
+
padding_multiple: int = 4096,
|
20 |
+
tie_embeddings: bool = True,
|
21 |
+
intermediate_size: int = 17920,
|
22 |
+
bias: bool = False,
|
23 |
+
architecture_class_name: str = "RecurrentGPT",
|
24 |
+
block_class_name: str = "SandwichBlock",
|
25 |
+
norm_class_name: str = "RMSNorm_llama",
|
26 |
+
norm_eps: float = 0.000001,
|
27 |
+
mlp_class_name: str = "GatedMLP",
|
28 |
+
nonlin_name: str = "SiLU",
|
29 |
+
init_strategy: str = "takase",
|
30 |
+
init_orthogonal: bool = False,
|
31 |
+
state_init: str = "like-init",
|
32 |
+
injection_type: str = "linear",
|
33 |
+
n_layers_in_recurrent_block: int = 4,
|
34 |
+
mean_recurrence: int = 32,
|
35 |
+
sampling_scheme: str = "poisson-lognormal-filling",
|
36 |
+
mean_backprop_depth: int = 8,
|
37 |
+
n_layers_in_prelude: int = 2,
|
38 |
+
n_layers_in_coda: int = 2,
|
39 |
+
qk_bias: bool = True,
|
40 |
+
activation_checkpoint_impl: str = "per-iteration",
|
41 |
+
rope_base: float = 50_000,
|
42 |
+
torch_dtype: str = "bfloat16",
|
43 |
+
transformers_version: str = "4.47.1",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
**kwargs,
|
45 |
):
|
46 |
+
self.n_embd = n_embd
|
47 |
+
self.n_heads = n_heads
|
48 |
+
self.n_layers = n_layers
|
49 |
+
self.block_size = block_size
|
50 |
+
self.vocab_size = self.padded_vocab_size = vocab_size
|
51 |
+
self.padding_multiple = padding_multiple
|
52 |
+
self.tie_embeddings = tie_embeddings
|
53 |
+
self.intermediate_size = intermediate_size
|
54 |
+
self.bias = bias
|
55 |
+
self.architecture_class_name = architecture_class_name
|
56 |
+
self.block_class_name = block_class_name
|
57 |
+
self.norm_class_name = norm_class_name
|
58 |
+
self.norm_eps = norm_eps
|
59 |
+
self.mlp_class_name = mlp_class_name
|
60 |
+
self.nonlin_name = nonlin_name
|
61 |
+
self.init_strategy = init_strategy
|
62 |
+
self.init_orthogonal = init_orthogonal
|
63 |
+
self.state_init = state_init
|
64 |
+
self.injection_type = injection_type
|
65 |
+
self.n_layers_in_recurrent_block = n_layers_in_recurrent_block
|
66 |
+
self.mean_recurrence = mean_recurrence
|
67 |
+
self.sampling_scheme = sampling_scheme
|
68 |
+
self.mean_backprop_depth = mean_backprop_depth
|
69 |
+
self.n_layers_in_prelude = n_layers_in_prelude
|
70 |
+
self.n_layers_in_coda = n_layers_in_coda
|
71 |
+
self.qk_bias = qk_bias
|
72 |
+
self.activation_checkpoint_impl = activation_checkpoint_impl
|
73 |
+
self.rope_base = rope_base
|
74 |
+
self.torch_dtype = torch_dtype # Added from JSON
|
75 |
+
self.transformers_version = transformers_version # Added from JSON
|
76 |
+
# inference
|
77 |
+
self.test_time_noise = 0
|
78 |
+
self.test_time_noise_type = "fixed"
|
79 |
+
# Derived
|
80 |
+
self.num_key_value_heads = n_heads
|
81 |
+
self.num_attention_heads = n_heads
|
82 |
+
self.head_dim = n_embd // n_heads
|
83 |
+
self.effective_expected_depth = (
|
84 |
+
self.n_layers_in_prelude + self.n_layers_in_coda + self.n_layers_in_recurrent_block * self.mean_recurrence
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
)
|
86 |
+
self.init_values = {
|
87 |
+
"std": sqrt(2 / (5 * self.n_embd)),
|
88 |
+
"out_proj": sqrt(2 / (5 * self.n_embd)) / sqrt(2 * self.effective_expected_depth),
|
89 |
+
"embedding": sqrt(2 / (5 * self.n_embd)),
|
90 |
+
"embed_scale": sqrt(self.n_embd),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
super().__init__(
|
94 |
+
# pad_token_id=65509,
|
95 |
+
# bos_token_id=65504,
|
96 |
+
# eos_token_id=65505,
|
97 |
+
tie_word_embeddings=tie_embeddings,
|
98 |
+
**kwargs,
|
99 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|