--- {} --- ``` model: opt-125m config: IntxWeightOnlyConfig config version: 1 torchao version: 0.14.dev ``` ``` import logging import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig from huggingface_hub import HfApi import io # Configure logging to see warnings and debug information logging.basicConfig( level=logging.INFO, format="%(name)s - %(levelname)s - %(message)s" ) # Enable specific loggers that might contain the serialization warnings logging.getLogger("transformers").setLevel(logging.INFO) logging.getLogger("torchao").setLevel(logging.INFO) logging.getLogger("safetensors").setLevel(logging.INFO) logging.getLogger("huggingface_hub").setLevel(logging.INFO) model_id = "facebook/opt-125m" from torchao.quantization import IntxWeightOnlyConfig from torchao.quantization.granularity import PerGroup version = 1 quant_config = IntxWeightOnlyConfig( weight_dtype=torch.int4, granularity=PerGroup(32), version=version ) quantization_config = TorchAoConfig(quant_type=quant_config) quantized_model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config, ) tokenizer = AutoTokenizer.from_pretrained(model_id) # Push to hub MODEL_NAME = model_id.split("/")[-1] save_to = f"torchao-testing/{MODEL_NAME}-IntxWeightOnlyConfig-v{version}-0.14.0.dev" quantized_model.push_to_hub(save_to, safe_serialization=False) tokenizer.push_to_hub(save_to) # Manual Testing prompt = "Hey, are you conscious? Can you talk to me?" print("Prompt:", prompt) inputs = tokenizer( prompt, return_tensors="pt", ).to("cuda") # setting temperature to 0 to make sure result deterministic generated_ids = quantized_model.generate(**inputs, max_new_tokens=128, temperature=0) api = HfApi() buf = io.BytesIO() torch.save(prompt, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_prompt.pt", repo_id=save_to, ) buf = io.BytesIO() torch.save(generated_ids, buf) api.upload_file( path_or_fileobj=buf, path_in_repo="model_output.pt", repo_id=save_to, ) output_text = tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False ) print("Response:", output_text[0][len(prompt) :]) ```