File size: 2,218 Bytes
ba30f2a 95032a5 ba30f2a 95032a5 ed61774 ba30f2a 95032a5 ed61774 ba30f2a 97d1eb3 95032a5 ba30f2a 95032a5 ba30f2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: modernbert_agree_classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# modernbert_agree_classifier
This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2279
- Accuracy: 0.7059
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00016
- train_batch_size: 6
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 12
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- training_steps: 550
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 2.1915 | 0.2762 | 50 | 1.1417 | 0.2588 |
| 1.3494 | 0.5525 | 100 | 0.6381 | 0.7412 |
| 1.3588 | 0.8287 | 150 | 0.6750 | 0.5922 |
| 1.0859 | 1.1050 | 200 | 0.8046 | 0.7373 |
| 1.5857 | 1.3812 | 250 | 0.6222 | 0.6667 |
| 0.5529 | 1.6575 | 300 | 1.0381 | 0.4471 |
| 1.2417 | 1.9337 | 350 | 0.9943 | 0.6980 |
| 0.0183 | 2.2099 | 400 | 2.7391 | 0.6941 |
| 0.0112 | 2.4862 | 450 | 2.3648 | 0.6706 |
| 0.0004 | 2.7624 | 500 | 2.3759 | 0.6667 |
| 0.0007 | 3.0387 | 550 | 3.2279 | 0.7059 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
|