Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,120 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **
|
21 |
-
- **
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
### Model Sources
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
|
64 |
### Recommendations
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
|
173 |
-
|
|
|
174 |
|
175 |
-
|
|
|
|
|
176 |
|
177 |
-
|
178 |
|
179 |
-
|
|
|
|
|
180 |
|
181 |
-
|
182 |
|
183 |
-
|
|
|
184 |
|
185 |
-
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
|
|
|
196 |
|
197 |
-
|
198 |
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- big-five
|
5 |
+
- regression
|
6 |
+
- psychology
|
7 |
+
- transformer
|
8 |
+
- text-analysis
|
9 |
+
license: mit
|
10 |
+
datasets:
|
11 |
+
- jingjietan/essays-big5
|
12 |
+
language:
|
13 |
+
- en
|
14 |
---
|
15 |
|
16 |
+
# 🧠 Big Five Personality Regression Model
|
|
|
|
|
17 |
|
18 |
+
This model predicts Big Five personality traits — Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism — from English free-text inputs. The output is a set of five continuous values between 0.0 and 1.0, corresponding to each trait.
|
19 |
|
20 |
+
---
|
21 |
|
22 |
## Model Details
|
23 |
|
24 |
### Model Description
|
25 |
|
26 |
+
- **Developed by:** [vladinc](https://huggingface.co/vladinc)
|
27 |
+
- **Model type:** `distilbert-base-uncased`, fine-tuned
|
28 |
+
- **Language(s):** English
|
29 |
+
- **License:** MIT
|
30 |
+
- **Finetuned from model:** `distilbert-base-uncased`
|
31 |
+
- **Trained on:** ~8,700 essays from the `jingjietan/essays-big5` dataset
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
### Model Sources
|
34 |
|
35 |
+
- **Repository:** [https://huggingface.co/vladinc/bigfive-regression-model](https://huggingface.co/vladinc/bigfive-regression-model)
|
36 |
|
37 |
+
---
|
|
|
|
|
38 |
|
39 |
## Uses
|
40 |
|
|
|
|
|
41 |
### Direct Use
|
42 |
|
43 |
+
This model can be used to estimate personality profiles from user-written text. It may be useful in psychological analysis, conversational profiling, or educational feedback systems.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
### Out-of-Scope Use
|
46 |
|
47 |
+
- Not intended for clinical or diagnostic use.
|
48 |
+
- Should not be used to make hiring, legal, or psychological decisions.
|
49 |
+
- Not validated across cultures or demographic groups.
|
50 |
|
51 |
+
---
|
52 |
|
53 |
## Bias, Risks, and Limitations
|
54 |
|
55 |
+
- Trained on essay data; generalizability to tweets, messages, or other short-form texts may be limited.
|
56 |
+
- Traits like Extraversion and Neuroticism had higher validation MSE, suggesting reduced predictive reliability.
|
57 |
+
- Cultural and linguistic biases in training data may influence predictions.
|
58 |
|
59 |
### Recommendations
|
60 |
|
61 |
+
Do not use predictions from this model in isolation. Supplement with human judgment and/or other assessment tools.
|
62 |
|
63 |
+
---
|
64 |
|
65 |
## How to Get Started with the Model
|
66 |
|
67 |
+
```python
|
68 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
model = AutoModelForSequenceClassification.from_pretrained("vladinc/bigfive-regression-model")
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained("vladinc/bigfive-regression-model")
|
72 |
|
73 |
+
text = "I enjoy reflecting on abstract concepts and trying new things."
|
74 |
+
inputs = tokenizer(text, return_tensors="pt")
|
75 |
+
outputs = model(**inputs)
|
76 |
|
77 |
+
print(outputs.logits) # 5 float scores between 0.0 and 1.0
|
78 |
|
79 |
+
Training Details
|
80 |
+
Training Data
|
81 |
+
Dataset: jingjietan/essays-big5
|
82 |
|
83 |
+
Format: Essay text + 5 numeric labels for personality traits
|
84 |
|
85 |
+
Training Procedure
|
86 |
+
Epochs: 3
|
87 |
|
88 |
+
Batch size: 8
|
89 |
|
90 |
+
Learning rate: 2e-5
|
91 |
|
92 |
+
Loss Function: Mean Squared Error
|
93 |
|
94 |
+
Metric for Best Model: MSE on Openness
|
95 |
|
96 |
+
Evaluation
|
97 |
+
Metrics
|
98 |
+
Trait Validation MSE
|
99 |
+
Openness 0.324
|
100 |
+
Conscientiousness 0.537
|
101 |
+
Extraversion 0.680
|
102 |
+
Agreeableness 0.441
|
103 |
+
Neuroticism 0.564
|
104 |
|
105 |
+
Citation
|
106 |
+
If you use this model, please cite it:
|
107 |
|
108 |
+
BibTeX:
|
109 |
|
110 |
+
bibtex
|
111 |
+
Copy
|
112 |
+
Edit
|
113 |
+
@misc{vladinc2025bigfive,
|
114 |
+
title={Big Five Personality Regression Model},
|
115 |
+
author={vladinc},
|
116 |
+
year={2025},
|
117 |
+
howpublished={\\url{https://huggingface.co/vladinc/bigfive-regression-model}}
|
118 |
+
}
|
119 |
+
Contact
|
120 |
+
If you have questions or suggestions, feel free to reach out via the Hugging Face profile.
|