---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: I need some icon suggestions for this layout
- text: Tighten the letter spacing
- text: Group the logo and title together
- text: Create a photo of a mountain landscape
- text: Mirror the logo vertically
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: nomic-ai/nomic-embed-text-v1.5
model-index:
- name: SetFit with nomic-ai/nomic-embed-text-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.29854096520763185
name: Accuracy
---
# SetFit with nomic-ai/nomic-embed-text-v1.5
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [nomic-ai/nomic-embed-text-v1.5](https://huggingface.co/nomic-ai/nomic-embed-text-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 8192 tokens
- **Number of Classes:** 63 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------|
| 0 |
- 'Add a corporate presentation background'
|
| 1 | - 'I need some icon suggestions for this layout'
|
| 2 | - "Add a heading that says 'Welcome'"
|
| 3 | - 'Distribute the shapes across the page'
|
| 4 | - 'Add a zoom animation to the logo'
|
| 5 | - 'Make everything fade in gradually'
|
| 6 | - 'Remove the unwanted text overlay'
|
| 7 | - 'Remove the background shape'
|
| 8 | - 'What shape options do you have?'
|
| 9 | - 'Distribute the buttons around the center image'
|
| 10 | - 'Duplicate the page structure'
|
| 11 | - 'Duplicate the icon and move it'
|
| 12 | - 'Copy the content to the final page'
|
| 13 | |
| 14 | - 'Mirror the logo vertically'
|
| 15 | - 'Create a photo of a mountain landscape'
|
| 16 | - 'Create a card for a birthday party'
|
| 17 | - 'Group the logo and title together'
|
| 18 | - 'Move the image to the center'
|
| 19 | - 'Apply a vintage filter to the photo'
|
| 20 | - 'Find me texture patterns'
|
| 21 | - 'Restore the previous color'
|
| 22 | - 'Remove the background from the illustration'
|
| 23 | |
| 24 | - 'Replace the old logo with a new one'
|
| 25 | |
| 26 | - 'Reset the image adjustments'
|
| 27 | |
| 28 | - 'Resize to LinkedIn post dimensions'
|
| 29 | - 'Turn the logo 270 degrees'
|
| 30 | - 'Scatter the particles around the text'
|
| 31 | - 'Select the footer content'
|
| 32 | - 'Change to a light gray background'
|
| 33 | - 'Change the blend mode to color burn'
|
| 34 | |
| 35 | - 'Add a double border to the image'
|
| 36 | - 'Make the photo more illuminated'
|
| 37 | - 'Send the logo to the back'
|
| 38 | - 'Increase the image contrast'
|
| 39 | |
| 40 | |
| 41 | - 'Change the background color to green'
|
| 42 | - 'Increase the menu font size'
|
| 43 | - 'Make the text bold and strikethrough'
|
| 44 | - 'Use a decorative font for the logo'
|
| 45 | - 'Brighten the light areas'
|
| 46 | - 'Set the picture as full background'
|
| 47 | - 'Tighten the letter spacing'
|
| 48 | |
| 49 | - 'Reduce the opacity of the overlay'
|
| 50 | - 'Reduce the paragraph spacing'
|
| 51 | - 'Make the colors more vibrant'
|
| 52 | - 'Make the shadows deeper'
|
| 53 | - 'Increase the image sharpness'
|
| 54 | - 'Left align the subtitle'
|
| 55 | - 'Create a text container'
|
| 56 | - 'Create text in a spiral pattern'
|
| 57 | - 'Convert to bullet point format'
|
| 58 | - 'Add a colored shadow to the text'
|
| 59 | - 'Increase the warm color cast'
|
| 60 | - 'I want to upload a new image'
|
| 61 | - 'Revert the opacity change'
|
| 62 | - 'Break apart the grouped elements'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.2985 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("Tighten the letter spacing")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 5.2857 | 8 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 1 |
| 1 | 1 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |
| 5 | 1 |
| 6 | 1 |
| 7 | 1 |
| 8 | 1 |
| 9 | 1 |
| 10 | 1 |
| 11 | 1 |
| 12 | 1 |
| 13 | 1 |
| 14 | 1 |
| 15 | 1 |
| 16 | 1 |
| 17 | 1 |
| 18 | 1 |
| 19 | 1 |
| 20 | 1 |
| 21 | 1 |
| 22 | 1 |
| 23 | 1 |
| 24 | 1 |
| 25 | 1 |
| 26 | 1 |
| 27 | 1 |
| 28 | 1 |
| 29 | 1 |
| 30 | 1 |
| 31 | 1 |
| 32 | 1 |
| 33 | 1 |
| 34 | 1 |
| 35 | 1 |
| 36 | 1 |
| 37 | 1 |
| 38 | 1 |
| 39 | 1 |
| 40 | 1 |
| 41 | 1 |
| 42 | 1 |
| 43 | 1 |
| 44 | 1 |
| 45 | 1 |
| 46 | 1 |
| 47 | 1 |
| 48 | 1 |
| 49 | 1 |
| 50 | 1 |
| 51 | 1 |
| 52 | 1 |
| 53 | 1 |
| 54 | 1 |
| 55 | 1 |
| 56 | 1 |
| 57 | 1 |
| 58 | 1 |
| 59 | 1 |
| 60 | 1 |
| 61 | 1 |
| 62 | 1 |
### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0161 | 1 | 0.1282 | - |
| 0.8065 | 50 | 0.0118 | - |
### Framework Versions
- Python: 3.12.11
- SetFit: 1.1.3
- Sentence Transformers: 5.1.0
- Transformers: 4.54.1
- PyTorch: 2.7.1
- Datasets: 4.0.0
- Tokenizers: 0.21.4
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```